How the network around ROS protects against oxidative stress and Parkinson's disease (PD), and how processes at the minutes timescale cause disease and aging after decades, remains enigmatic. Challenging whether the ROS network is as complex as it seems, we built a fairly comprehensive version thereof which we disentangled into a hierarchy of only five simpler subnetworks each delivering one type of robustness. The comprehensive dynamic model described in vitro data sets from two independent laboratories.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons (MNs), probably by a combination of cell- and non-cell-autonomous processes. The past decades have brought many important insights into the role of astrocytes in nervous system function and disease, including the implication in ALS pathogenesis possibly through the impairment of Ca-dependent astrocyte-MN cross-talk. In this respect, it has been recently proposed that altered astrocytic store-operated Ca entry (SOCE) may underlie aberrant gliotransmitter release and astrocyte-mediated neurotoxicity in ALS.
View Article and Find Full Text PDFAstrocytes have emerged as critical elements for the maintenance and function of the central nervous system. The expression on their cell membrane of RAGE and TLR4 receptors makes astrocytes susceptible to High-mobility group box 1 (HMGB1), a nuclear protein typically released in the extracellular milieu by living cells experiencing physiological stress conditions or by damaged cells. Here, we show that the interaction of HMGB1 with normal spinal cord astrocytes induces the astrocytic production of neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF).
View Article and Find Full Text PDFNeuronal differentiation involves extensive modification of biochemical and morphological properties to meet novel functional requirements. Reorganization of the mitochondrial network to match the higher energy demand plays a pivotal role in this process. Mechanisms of neuronal differentiation in response to nerve growth factor (NGF) have been largely characterized in terms of signaling, however, little is known about its impact on mitochondrial remodeling and metabolic function.
View Article and Find Full Text PDFConsiderable evidence indicates that neurodegeneration in amyotrophic lateral sclerosis (ALS) can be conditioned by a deleterious interplay between motor neurons and astrocytes. Astrocytes are the major glial component in the central nervous system (CNS) and fulfill several activities that are essential to preserve CNS homeostasis. In physiological and pathological conditions, astrocytes secrete a wide range of factors by which they exert multimodal influences on their cellular neighbours.
View Article and Find Full Text PDFSeveral lines of evidence suggest that astrocytes play a key role in modulating the immune responses of the central nervous system (CNS) to infections, injuries, or pathologies. Yet, their contribution to these processes remains mostly elusive. Astroglia are endowed with a wide range of toll-like receptors (TLR) by which they can sense infectious agents as well as endogenous danger signals released by damaged cells.
View Article and Find Full Text PDFCell Mol Life Sci
January 2014
Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells.
View Article and Find Full Text PDFGrowing evidence indicates that astrocytes cannot be just considered as passive supportive cells deputed to preserve neuronal activity and survival, but rather they are involved in a striking number of active functions that are critical to the performance of the central nervous system (CNS). As a consequence, it is becoming more and more evident that the peculiar properties of these cells can actively contribute to the extraordinary functional complexity of the brain and spinal cord. This new perception of the functioning of the CNS opens up a wide range of new possibilities to interpret various physiological and pathological events, and moves the focus beyond the neuronal compartment toward astrocyte-neuron interactions.
View Article and Find Full Text PDFRecent evidence highlights the peroxisome proliferator-activated receptors (PPARs) as critical neuroprotective factors in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To gain new mechanistic insights into the role of these receptors in the context of ALS, here we investigated how PPAR transcriptional activity varies in hSOD1(G93A) ALS transgenic mice. We demonstrate that PPARγ-driven transcription selectively increases in the spinal cord of symptomatic hSOD1(G93A) mice.
View Article and Find Full Text PDFCollective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5).
View Article and Find Full Text PDFThe seminal discovery that glial cells, particularly astrocytes, can release a number of gliotransmitters that serve as signalling molecules for the cross-talk with neighbouring cellular populations has recently changed our perception of brain functioning, as well as our view of the pathogenesis of several disorders of the CNS. Since glutamate was one of the first gliotransmitters to be identified and characterized, we tackle the mechanisms that underlie its release from astrocytes, including the Ca2+ signals underlying its efflux from astroglia, and we discuss the involvement of these events in a number of relevant physiological processes, from the modulatory control of neighbouring synapses to the regulation of blood supply to cerebral tissues. The relevance of these mechanisms strongly indicates that the contribution of glial cells and gliotransmission to the activities of the brain cannot be overlooked, and any study of CNS physiopathology needs to consider glial biology to have a comprehensive overview of brain function and dysfunction.
View Article and Find Full Text PDF