We introduce a quantum virial expansion for the optical response of a doped two-dimensional semiconductor. As we show, this constitutes a perturbatively exact theory in the high-temperature or low-doping regime, where the electrons' thermal wavelength is smaller than their interparticle spacing. We obtain exact analytic expressions for the photoluminescence and we predict new features such as a nontrivial shape of the attractive branch peak related to universal resonant exciton-electron scattering and an associated energy shift from the trion energy.
View Article and Find Full Text PDFWe study two-dimensional charge-imbalanced electron-hole systems embedded in an optical microcavity. We find that strong coupling to photons favors states with pairing at zero or small center-of-mass momentum, leading to a condensed state with spontaneously broken time-reversal and rotational symmetry and unpaired carriers that occupy an anisotropic crescent-shaped sliver of momentum space. The crescent state is favored at moderate charge imbalance, while a Fulde-Ferrel-Larkin-Ovchinnikov-like state-with pairing at large center-of-mass momentum-occurs instead at strong imbalance.
View Article and Find Full Text PDFWe theoretically investigate the many-body states of exciton polaritons that can be observed by pump-probe spectroscopy in high-Q inorganic microcavities. Here, a weak-probe "spin-down" polariton is introduced into a coherent state of "spin-up" polaritons created by a strong pump. We show that the ↓ impurities become dressed by excitations of the ↑ medium, and that they form new polaronic quasiparticles that feature two-point and three-point many-body quantum correlations that, in the low density regime, arise from coupling to the vacuum biexciton and triexciton states, respectively.
View Article and Find Full Text PDFVortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles.
View Article and Find Full Text PDFWe consider a mixture of single-component bosonic and fermionic atoms in an array of coupled one-dimensional "tubes." For an attractive Bose-Fermi interaction, we show that the system exhibits phase separation instead of the usual collapse. Moreover, above a critical intertube hopping, all first-order instabilities disappear in both attractive and repulsive mixtures.
View Article and Find Full Text PDFRecent years have witnessed novel and exciting advances on the subject of optical coherence and collective phenomena in nanostructures. This volume overviews the forefront progress in this area, collecting nine reviews and ten new contributions by leading experts in the field. The subfields included in this volume span from two-dimensional electron gases, semiconductor excitons, coupled quantum wells, microcavity polaritons, quantum dots and quantum wires.
View Article and Find Full Text PDF