Publications by authors named "Francesca Lo Presti"

This work reports the engineering and functional properties of an emerging class of heterobimetallic 3d-4f ionic complexes designed with cobalt and rare-earth (RE) metals. We present a comprehensive examination of the structural, magnetic, optical, and thermal properties of the heterobimetallic ionic complexes with the general formula [Co(hfa)][RE(hfa)tetraglyme] (RE = Dy, Eu, and Y), where the metal centres are coordinated by hexafluoroacetylacetonate (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), β-diketone and tetraglyme (2,5,8,11,14-pentaoxapentadecane) polyether. Structural analysis reveals an octahedral coordination geometry enveloping the cobalt(II) centre, characterized by inherent symmetry properties consistent across the derivatives, while a capped square-antiprism coordination polyhedron is observed for the RE ions.

View Article and Find Full Text PDF

Lithium niobate is a lead-free material which has attracted considerable attention due to its excellent optical, piezoelectric, and ferroelectric properties. This research is devoted to the synthesis through an innovative sol-gel/spin-coating approach of polycrystalline LiNbO films on Si substrates. A novel single-source hetero-bimetallic precursor containing lithium and niobium was synthesized and applied to the sol-gel synthesis.

View Article and Find Full Text PDF

This contribution reports, through a combined thermogravimetric analysis, differential scanning calorimetry, UV-vis, powder X-ray diffraction, and Rietveld refinement analysis, on the stimuli-responsive chromic properties of a substituted Zn(salmal) Schiff-base Lewis acidic complex with unique and distinct thermo- and vapochromic characteristics. The solid complex obtained in air or by evaporation of the solvent from their THF solutions shows a marked thermochromism associated with a phase transition, unusually triggered by the reversible desorption/adsorption of one lattice water molecule. In contrast, the anhydrous solid, achieved from THF solutions of the complex by evaporation of the solvent under anhydrous conditions, behaves very differently as it does not show any absorption of water or thermochromism and exhibits varied vapochromic properties.

View Article and Find Full Text PDF

In this paper, we report on the synthesis of a new hybrid photocatalytic material activated by natural sunlight irradiation. The material consists of multiferroic nanoparticles of bismuth ferrite (BFO) modified through the growth of the Fe-based MIL-101 framework. Material characterization, conducted using various techniques (X-ray diffraction, transmission electron microscopy, FTIR, and X-ray photoelectron spectroscopies), confirmed the growth of the MIL-101 metal-organic framework on the BFO surface.

View Article and Find Full Text PDF

The monoclinic structures of vanadium dioxide are widely studied as appealing systems due to a plethora of functional properties in several technological fields. In particular, the possibility to obtain the VO material in the form of thin film with a high control of structure and morphology represents a key issue for their use in THz devices and sensors. Herein, a fine control of the crystal habit has been addressed through an in-depth study of the metal organic chemical vapor deposition (MOCVD) synthetic approach.

View Article and Find Full Text PDF

Rare-earth (RE)-based metal organic frameworks (MOFs) are quickly gaining popularity as flexible functional materials in a variety of technological fields. These MOFs are useful for more than just conventional uses like gas sensors and catalyst materials; in fact, they also show significant promise in emerging technologies including photovoltaics, optical, and biomedical applications. Using yttrium and europium as ionic host centres and dopants, respectively, and 1,3,5-benzenetricarboxylic acid (H-BTC) as an organic linker, we describe a simple and green approach for the fabrication of RE-MOFs.

View Article and Find Full Text PDF

In the present energetic scenario, the development of materials with high potentiality in the technological fields of energy conversion processes, production and storage of hydrogen, are of great interest in the scientific community. In particular, we report for the first time the fabrication of crystalline and homogeneous barium-cerate-based materials in the form of thin films on various substrates. Starting from the β-diketonate precursor sources Ce(hfa)diglyme, Ba(hfa)tetraglyme and Y(hfa)diglyme (Hhfa = 1,1,1,5,5,5-hexafluoroacetylacetone; diglyme = bis(2-methoxyethyl)ether; tetraglyme = 2,5,8,11,14-pentaoxapentadecane), a metalorganic chemical vapor deposition (MOCVD) approach has been successfully applied to the fabrication of BaCeO and doped BaCeYO systems in the form of thin films.

View Article and Find Full Text PDF

Copper oxide thin films have been successfully synthesized through a metal-organic chemical vapor deposition (MOCVD) approach starting from the copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate), Cu(tmhd), complex. Operative conditions of fabrication strongly affect both the composition and morphologies of the copper oxide thin films. The deposition temperature has been accurately monitored in order to stabilize and to produce, selectively and reproducibly, the two phases of cuprite CuO and/or tenorite CuO.

View Article and Find Full Text PDF

Atmospheric pressure (AP) vapor phase processes such as spatial atomic layer deposition (S-ALD) and AP-metalorganic chemical vapor deposition (AP-MOCVD) are becoming increasingly appealing for their use in a variety of academic and industrial applications. Evaluation of precursor vapour pressures is crucial for their application in AP processes and to this aim the Langmuir equation has been applied as a simple and straightforward method for estimating the vapor pressure and vaporization enthalpy of various metalorganic precursors. Using benzoic acid as a calibration reference, the vapour pressure-temperature curves for several alkaline-earth β-diketonate fluorinated compounds, with molecular formula "M(hfa)·L" (with M = Mg, Ca, Sr, Ba; Hhfa = 1,1,1,5,5,5-hexafluoroacetylacetone and L = diglyme, triglyme, and tetraglyme) are derived from their termogravimetric curves.

View Article and Find Full Text PDF

A nanometric hybrid system consisting of a FeO magnetic nanoparticles modified through the growth of Fe-based Metal-organic frameworks of the MIL (Materials Institute Lavoiser) was developed. The obtained system retains both the nanometer dimensions and the magnetic properties of the FeO nanoparticles and possesses increased the loading capability due to the highly porous Fe-MIL. It was tested to load, carry and release temozolomide (TMZ) for the treatment of glioblastoma multiforme one of the most aggressive and deadly human cancers.

View Article and Find Full Text PDF

A non-conventional approach to prepare titanium dioxide-reduced graphene oxide (TiO-rGO) nanocomposites based on solar photoreduction is here presented. The standard hydro-solvothermal synthesis of the TiO-rGO composites requires high temperatures and several steps, whereas the proposed one-pot preparation allows one to obtain the photocatalysts with a simple and green procedure, by exploiting the photocatalytic properties of titania activated by the solar irradiation. The TiO-rGO catalysts were tested in the solar photodegradation of a widely adopted toxic herbicide (2,4-Dichlorophenoxyacetic acid, 2,4-D), obtaining the 97% of degradation after 3 h of irradiation.

View Article and Find Full Text PDF