We performed synergic experimental/theoretical studies on the mechanism of the O((3)P) + propyne reaction by combining crossed molecular beams experiments with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy (Ec) with ab initio electronic structure calculations at a high level of theory of the relevant triplet and singlet potential energy surfaces (PESs) and statistical calculations of branching ratios (BRs) taking into account intersystem crossing (ISC). In this paper (I) we report the results of the experimental investigation, while the accompanying paper (II) shows results of the theoretical investigation with comparison to experimental results.
View Article and Find Full Text PDFWe report direct experimental and theoretical evidence that, under single-collision conditions, the dominant product channels of the O((3)P) + propyne and O((3)P) + allene isomeric reactions lead in both cases to CO formation, but the coproducts are singlet ethylidene ((1)CH3CH) and singlet ethylene (CH2CH2), respectively. These data, which settle a long-standing issue on whether ethylidene is actually formed in the O((3)P) + propyne reaction, suggest that formation of CO + alkylidene biradicals may be a common mechanism in O((3)P) + alkyne reactions, in contrast to formation of CO + alkene molecular products in the corresponding isomeric O((3)P) + diene reactions, either in combustion or other gaseous environments. These findings are of fundamental relevance and may have implications for improved combustion models.
View Article and Find Full Text PDFThe combustion relevant O((3)P) + C2H4 reaction stands out as a prototypical multichannel nonadiabatic reaction involving both triplet and singlet potential energy surfaces (PESs), which are strongly coupled. Crossed molecular beam (CMB) scattering experiments with universal soft electron ionization mass spectrometric detection have been used to characterize the dynamics of this reaction at the relatively high collision energy Ec of 13.7 kcal/mol, attained by crossing the reactant beams at an angle of 135°.
View Article and Find Full Text PDFComprehension of the detailed mechanism of O((3)P) + unsaturated hydrocarbon reactions is complicated by the existence of many possible channels and intersystem crossing (ISC) between triplet and singlet potential energy surfaces (PESs). We report synergic experimental/theoretical studies of the O((3)P) + propene reaction by combining crossed molecular beams experiments using mass spectrometric detection at 9.3 kcal/mol collision energy (Ec) with high-level ab initio electronic structure calculations of the triplet PES and RRKM/master equation computations of branching ratios (BRs) including ISC.
View Article and Find Full Text PDFThe reaction between ground state oxygen atoms, O((3)P), and the acetylene molecule, C2H2, has been investigated in crossed molecular beam experiments with mass-spectrometric detection and time-of-flight analysis at three different collision energies, Ec = 34.4, 41.1 and 54.
View Article and Find Full Text PDFThe reaction involving atomic carbon in its first electronically excited state (1)D and methane has been investigated in crossed molecular beam experiments at a collision energy of 25.3 kJ mol(-1). Electronic structure calculations of the underlying potential energy surface (PES) and Rice-Ramsperger-Kassel-Marcus (RRKM) estimates of rates and branching ratios have been performed to assist the interpretation of the experimental results.
View Article and Find Full Text PDFThe reaction of O((3)P) with C(2)H(4), of importance in combustion and atmospheric chemistry, stands out as paradigm reaction involving not only the indicated triplet state potential energy surface (PES) but also an interleaved singlet PES that is coupled to the triplet surface. This reaction poses great challenges for theory and experiment, owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Crossed molecular beam (CMB) scattering experiments with soft electron ionization detection are used to disentangle the dynamics of this polyatomic multichannel reaction at a collision energy E(c) of 8.
View Article and Find Full Text PDFThe dynamics of the H displacement channels in the reaction N((2)D) + C(2)H(4) have been investigated by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at two different collision energies (17.2 and 28.2 kJ/mol).
View Article and Find Full Text PDFThe O((3)P) + C(2)H(4) reaction, of importance in combustion and atmospheric chemistry, stands out as a paradigm reaction involving triplet- and singlet-state potential energy surfaces (PESs) interconnected by intersystem crossing (ISC). This reaction poses challenges for theory and experiments owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Primary products from five competing channels (H + CH(2)CHO, H + CH(3)CO, H(2) + CH(2)CO, CH(3) + HCO, CH(2) + CH(2)O) and branching ratios (BRs) are determined in crossed molecular beam experiments with soft electron-ionization mass-spectrometric detection at a collision energy of 8.
View Article and Find Full Text PDFThe reaction between sulfur atoms in the first electronically excited state, S((1)D), and methane (CH(4)), has been investigated in a complementary fashion in (a) crossed-beam dynamics experiments with mass spectrometric detection and time-of-flight (TOF) analysis at two collision energies (30.4 and 33.6 kJ mol(-1)), (b) low temperature kinetics experiments ranging from 298 K down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the CH(4)S singlet potential energy surface.
View Article and Find Full Text PDFThe dynamics of the H-displacement channels in the reaction N(2D) + C2H6 have been investigated by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at two different collision energies (18.0 and 31.4 kJ mol(-1)).
View Article and Find Full Text PDFThe dynamics of the radical-radical reaction O((3)P) + CH(3), a prototypical case for the reactions of atomic oxygen with alkyl radicals of great relevance in combustion chemistry, has been investigated by means of the crossed molecular beam technique with mass spectrometric detection at a collision energy of 55.9 kJ mol(-1). The results have been examined in the light of previous kinetic and theoretical work.
View Article and Find Full Text PDFThe reaction between sulfur atoms in the first electronically excited state, S((1)D), and ethene (C(2)H(4)) has been investigated in a complementary fashion in (a) crossed-beam dynamic experiments with mass spectrometric detection and time-of-flight (TOF) analysis at two collision energies (37.0 and 45.0 kJ mol(-1)), (b) low temperature kinetics experiments ranging from 298 K down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the C(2)H(4)S singlet and triplet potential energy surfaces.
View Article and Find Full Text PDFThe reaction between excited sulfur atoms, S((1)D), and the simplest alkene molecule, ethene, has been investigated in a complementary fashion in (a) crossed-beam dynamic experiments with mass spectrometric detection and time-of-flight (TOF) analysis at a collision energy of 37.0 kJ mol(-1), (b) low temperature kinetic experiments ranging from room temperature down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the C(2)H(4)S singlet potential energy surface. The rate coefficients for total loss of S((1)D) are found to be very large (ca.
View Article and Find Full Text PDFThe reaction dynamics of excited sulfur atoms, S((1)D), with acetylene has been investigated by the crossed-beam scattering technique with mass spectrometric detection and time-of-flight (TOF) analysis at the collision energy of 35.6 kJ mol(-1). These studies have been made possible by the development of intense continuous supersonic beams of S((3)P,(1)D) atoms.
View Article and Find Full Text PDFIn this Perspective we highlight developments in the field of chemical reaction dynamics. Focus is on the advances recently made in the investigation of the dynamics of elementary multichannel radical-molecule and radical-radical reactions, as they have become possible using an improved crossed molecular beam scattering apparatus with universal electron-ionization mass spectrometric detection and time-of-flight analysis. These improvements consist in the implementation of (a) soft ionization detection by tunable low-energy electrons which has permitted us to reduce interfering signals originating from dissociative ionization processes, usually representing a major complication, (b) different beam crossing-angle set-ups which have permitted us to extend the range of collision energies over which a reaction can be studied, from very low (a few kJ mol(-1), as of interest in astrochemistry or planetary atmospheric chemistry) to quite high energies (several tens of kJ mol(-1), as of interest in high temperature combustion systems), and (c) continuous supersonic sources for producing a wide variety of atomic and molecular radical reactant beams.
View Article and Find Full Text PDFA detailed investigation of the dynamics of the reactions of ground- and excited-state carbon atoms, C(3P) and C(1D), with acetylene is reported over a wide collision energy range (3.6-49.1 kJ mol-1) using the crossed molecular beam (CMB) scattering technique with electron ionization mass spectrometric detection and time-of-flight (TOF) analysis.
View Article and Find Full Text PDFThe dynamics of the C + C2H2 reaction has been investigated using two crossed molecular beam apparatus of different concepts. Differential cross sections have been obtained for the C(3PJ) + C2H2(X1sigmag+) --> l/c-C3H + H(2S1/2) reaction in experiments conducted with pulsed supersonic beams and variable beam crossing angle configuration at two relative translational energies ET = 0.80 and 3.
View Article and Find Full Text PDFThe crossed molecular beam scattering technique with soft electron ionization (EI) is used to disentangle the complex dynamics of the polyatomic O(3P) + C2H4 reaction, which is of great relevance in combustion and atmospheric chemistry. Exploiting the newly developed capability of attaining universal product detection by using soft EI, at a collision energy of 54.0 kJ mol(-1), five different primary products have been identified, which correspond to the five exoergic competing channels leading to CH2CHO(vinoxy) + H, CH3CO(acetyl) + H, CH3(methyl) + HCO(formyl), CH2(methylene) + HCHO(formaldehyde), and CH2CO(ketene) + H2.
View Article and Find Full Text PDFSoft ionization by low-energy, tunable electrons is implemented for the first time in crossed molecular beam reactive scattering experiments with mass-spectrometric detection. The power of the method, which permits the suppression of the dissociative ionization of interfering species, is exemplified with the study of the O((3)P)+C(2)H(2) multichannel reaction.
View Article and Find Full Text PDF