Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water-oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm's natural properties into the MFC design.
View Article and Find Full Text PDFExosomes are among the most puzzling vehicles of intercellular communication, but several crucial aspects of their biogenesis remain elusive, primarily due to the difficulty in purifying vesicles with similar sizes and densities. Here we report an effective methodology for labelling small extracellular vesicles (sEV) using Bodipy FL C16, a fluorescent palmitic acid analogue. In this study, we present compelling evidence that the fluorescent sEV population derived from Bodipy C16-labelled cells represents a discrete subpopulation of small exosomes following an intracellular pathway.
View Article and Find Full Text PDFCaveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs).
View Article and Find Full Text PDFIncreasing interest is being addressed to the development of a reliable, reproducible and relevant in vitro model of intestinal barrier, mainly for engineered nanomaterials hazard and risk assessment, in order to meet regulatory and scientific demands. Starting from the consolidated Caco-2 cell model, widely used for determining translocation of drugs and chemicals, the establishment of an advanced intestinal barrier model with different level of complexity is important for overcoming Caco-2 monoculture limitations. For this purpose, a tri-culture model, consisting of two human intestinal epithelial cells (Caco-2 and HT29-MTX) and a human lymphocyte B cell (Raji B), was developed by several research groups to mimic the in vivo intestinal epithelium, furnishing appropriate tools for nanotoxicological studies.
View Article and Find Full Text PDFBiofilm at water-oil interface of hypoxic water columns of microcosms, prepared from a lacustrine sample, that used diesel as a carbon source was found to show electrogenic properties. These microcosms named, Liquid Microbial Fuel Cells (L-MFCs) were electrically characterized using a custom electronic analyzer; accurate determination of voltage (V), power density (W/m 2), and current density (A/m2) for both charge and discharge phases was carried out. The instrument made it possible to carry out cell characterizations using resistive loads between 0 Ω (Ohm) and 10 kΩ.
View Article and Find Full Text PDFThe early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II-IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0-I, II and III-IV melanoma patients ( = 38) could reflect disease stage.
View Article and Find Full Text PDFThe oil-water interface formed during an oil spill represents a challenging environment for pelagic communities living in aquatic ecosystems. At this anoxic barrier, we report the formation of a microbial hydrocarbonoclastic biofilm capable of electron transfer along the water column. This biofilm generated a membrane of surface-active compounds that allowed the spontaneous separation of electrical charges, causing the establishment of an anodic and a cathodic region and, as a result, the spontaneous creation of a liquid microbial fuel cell.
View Article and Find Full Text PDFNatural killer (NK) cells contribute to immunosurveillance and first-line defense in the control of tumor growth and metastasis diffusion. NK-cell-derived extracellular vesicles (NKEVs) are constitutively secreted and biologically active. They reflect the protein and genetic repertoire of originating cells, and exert antitumor activity and .
View Article and Find Full Text PDFInt J Immunopathol Pharmacol
June 2017
The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem.
View Article and Find Full Text PDFThe present study investigated potential modulatory effects of low doses of nano-sized titanium dioxide (TiO) on intestinal cells in vivo and in vitro. After short-term exposure to TiO nanoparticles in rats, histopathological analysis of intestinal tissues indicated a gender-specific effect with increased length of intestinal villi in male rats only. Moreover the intestinal tissue showed nanoparticle deposition as revealed by ICP-MS determination of titanium.
View Article and Find Full Text PDFIntroduction: Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts.
Results: The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro.
The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action.
View Article and Find Full Text PDFIt has been suggested that the rarity of human listeriosis due to Listeria ivanovii reflects not only host tropism factors but also the rare occurrence of this species in the environment, compared with Listeria monocytogenes. In the present study we evaluate the effects on the reference strain L. ivanovii ATCC 19119 behaviour of two combined stresses, low iron availability and acid environment, that bacteria can encounter in the passage from saprophytic life to the host.
View Article and Find Full Text PDFBackground: Crohn's disease is a multifactorial disease in which an aberrant immune response to commensal intestinal microbiota leads to chronic inflammation. The small intestine of patients with Crohn's disease is colonized by a group of adherent-invasive Escherichia coli strongly able to adhere and invade intestinal epithelial cells lactoferrin is an iron-binding glycoprotein known to have anti-bacterial and anti-inflammatory activities.
Aims: We explore the ability of bovine lactoferrin to modulate the interactions between the adherent-invasive E.
Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans.
View Article and Find Full Text PDFIn this study we evaluated the ability of lactoferrin, the most abundant antimicrobial protein in airway secretions, to bind the surface structures of a Burkholderia strain cystic fibrosis-isolated. Burkholderia cenocepacia is a gram-negative bacterium involved as respiratory pathogen in cystic fibrosis patient infections. This bacterium possesses filamentous structures, named cable pili that have been proposed as virulence factors because of their ability to bind to respiratory epithelia and mucin.
View Article and Find Full Text PDFThe distribution and potential bioaccumulation of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss Walbaum, 1792), a major aquaculture species, was studied in relation to fish growth over a period of >3 years. Fish were reared under normal farming conditions, that is, fed a standard fish food and exposed to negligible levels of waterborne trace elements. The age-related variations in the content of each trace element in gills, kidney, liver, muscle, and skin were studied through nonparametric regression analysis.
View Article and Find Full Text PDF