Publications by authors named "Francesca Cutruzzola"

Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like , the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity.

View Article and Find Full Text PDF

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs.

View Article and Find Full Text PDF
Article Synopsis
  • Brain insulin resistance connects energy metabolism failure to cognitive decline in type 2 diabetes and Alzheimer's disease, but the early changes leading to insulin resistance are not well understood.
  • Abnormal levels of biliverdin reductase-A (BVR-A) are found in both conditions, linked to insulin resistance and affecting insulin signaling and energy production in the brain.
  • The study reveals that lower BVR-A disrupts insulin response and mitochondrial function, highlighting its importance for potential therapeutic targets to combat brain insulin resistance and neurodegeneration.
View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is a widespread type of leukemia that predominantly targets B lymphocytes, undermining the balance between cell proliferation and apoptosis. In healthy B cells, miR-15/16, a tandem of microRNAs, functions as a tumor suppressor, curbing the expression of the antiapoptotic B cell lymphoma 2 protein (Bcl-2). Conversely, in CLL patients, a recurring deletion on chromosome 13q14, home to the miR15-a and miR16-1 genes, results in Bcl-2 overexpression, thereby fostering the onset of the pathology.

View Article and Find Full Text PDF

Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners.

View Article and Find Full Text PDF

The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange.

View Article and Find Full Text PDF

Amino acids are crucial in nitrogen cycling and to shape the metabolism of microorganisms. Among them, arginine is a versatile molecule able to sustain nitrogen, carbon, and even ATP supply and to regulate multicellular behaviors such as biofilm formation. Arginine modulates the intracellular levels of 3'-5'cyclic diguanylic acid (c-di-GMP), a second messenger that controls biofilm formation, maintenance and dispersion.

View Article and Find Full Text PDF

Growth factor receptor bound protein 2 (Grb2) is an adaptor protein featured by a nSH3-SH2-cSH3 domains. Grb2 finely regulates important cellular pathways such as growth, proliferation and metabolism and a minor lapse of this tight control may totally change the entire pathway to the oncogenic. Indeed, Grb2 is found overexpressed in many tumours type.

View Article and Find Full Text PDF

The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one‑carbon units to support cell growth.

View Article and Find Full Text PDF

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - Dendritic cells (DCs) play a key role in triggering and regulating immune responses against infections and inflammation by transitioning from a resting to an activated state upon detecting danger signals like viruses and microbial products.
  • - The maturation of DCs enhances their ability to capture and present antigens, upregulate various immune molecules, and migrate to lymphoid tissues to activate naive T cells.
  • - Activation of DCs through the RIG-I pathway, stimulated by synthetic RNA, leads to increased glycolysis, which is crucial for their immune function; inhibiting glycolysis can disrupt their antiviral responses and promote viral replication.
View Article and Find Full Text PDF

Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions.

View Article and Find Full Text PDF

Wingless/integrase-11 (WNT)/β-catenin pathway is a crucial upstream regulator of a huge array of cellular functions. Its dysregulation is correlated to neoplastic cellular transition and cancer proliferation. Members of the Dishevelled (DVL) family of proteins play an important role in the transduction of WNT signaling by contacting its cognate receptor, Frizzled, via a shared PDZ domain.

View Article and Find Full Text PDF

The capability to obtain essential nutrients in hostile environments is a critical skill for pathogens. Under zinc-deficient conditions, Pseudomonas aeruginosa expresses a pool of metal homeostasis control systems that is complex compared with other Gram-negative bacteria and has only been partially characterized. Here, the structure and zinc-binding properties of the protein PA4063, the first component of the PA4063-PA4066 operon, are described.

View Article and Find Full Text PDF

De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex.

View Article and Find Full Text PDF

Aspergillus fumigatus is a saprophytic ubiquitous fungus whose spores can trigger reactions such as allergic bronchopulmonary aspergillosis or the fatal invasive pulmonary aspergillosis. To survive in the lungs, the fungus must adapt to a hypoxic and nutritionally restrictive environment, exploiting the limited availability of aromatic amino acids (AAAs) in the best possible way, as mammals do not synthesize them. A key enzyme for AAAs catabolism in A.

View Article and Find Full Text PDF

The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism.

View Article and Find Full Text PDF

Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment.

View Article and Find Full Text PDF

Human serine hydroxymethyltransferase (SHMT) regulates the serine-glycine one carbon metabolism and plays a role in cancer metabolic reprogramming. Two SHMT isozymes are acting in the cell: SHMT1 encoding the cytoplasmic isozyme, and SHMT2 encoding the mitochondrial one. Here we present a molecular model built on experimental data reporting the interaction between SHMT1 protein and SHMT2 mRNA, recently discovered in lung cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • Alterations in protein O-GlcNAcylation may connect brain metabolism issues with neurodegeneration, particularly in Alzheimer's disease, where glucose uptake problems lead to decreased O-GlcNAcylation and pathological developments.
  • A high-fat diet (HFD) can disrupt metabolic processes and insulin sensitivity in the brain, which may contribute to cognitive decline by impacting O-GlcNAcylation linked to Alzheimer's and mitochondrial dysfunction.
  • Research indicates that an HFD negatively affects protein O-GlcNAcylation in both mice and human cell models, leading to insulin resistance and impairments in critical proteins like tau and those in the mitochondrial respiratory chain, emphasizing its role in neurodegenerative processes.
View Article and Find Full Text PDF

Melanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required.

View Article and Find Full Text PDF

GGDEF-containing proteins respond to different environmental cues to finely modulate cyclic diguanylate (c-di-GMP) levels in time and space, making the allosteric control a distinctive trait of the corresponding proteins. The diguanylate cyclase mechanism is emblematic of this control: two GGDEF domains, each binding one GTP molecule, must dimerize to enter catalysis and yield c-di-GMP. The need for dimerization makes the GGDEF domain an ideal conformational switch in multidomain proteins.

View Article and Find Full Text PDF

Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells.

View Article and Find Full Text PDF

Gab2 is a scaffolding protein, overexpressed in many types of cancers, that plays a key role in the formation of signaling complexes involved in cellular proliferation, migration, and differentiation. The interaction between Gab2 and the C-terminal SH3 domain of the protein Grb2 is crucial for the activation of the proliferation-signaling pathway Ras/Erk, thus representing a potential pharmacological target. In this study, we identified, by virtual screening, seven potential inhibitor molecules that were experimentally tested through kinetic and equilibrium binding experiments.

View Article and Find Full Text PDF