Grazing lands play a significant role in global carbon (C) dynamics, holding substantial soil organic carbon (SOC) stocks. However, historical mismanagement (e.g.
View Article and Find Full Text PDFAmong options for atmospheric CO removal, sequestering soil organic carbon (SOC) via improved grazing management is a rare opportunity because it is scalable across millions of globally grazed acres, low cost, and has high technical potential. Decades of scientific research on grazing and SOC has failed to form a cohesive understanding of how grazing management affects SOC stocks and their distribution between particulate (POM) and mineral-associated organic matter (MAOM)-characterized by different formation and stabilization pathways-across different climatic contexts. As we increasingly look to grazing management for SOC sequestration on grazinglands to bolster our climate change mitigation efforts, we need a clear and collective understanding of grazing management's impact on pathways of SOC change to inform on-the-ground management decisions.
View Article and Find Full Text PDFIdentifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral-associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.
View Article and Find Full Text PDFIncreasing soil organic carbon (SOC) in croplands by switching from conventional to conservation management may be hampered by stimulated microbial decomposition under warming. Here, we test the interactive effects of agricultural management and warming on SOC persistence and underlying microbial mechanisms in a decade-long controlled experiment on a wheat-maize cropping system. Warming increased SOC content and accelerated fungal community temporal turnover under conservation agriculture (no tillage, chopped crop residue), but not under conventional agriculture (annual tillage, crop residue removed).
View Article and Find Full Text PDFThe world's forests store large amounts of carbon (C), and growing forests can reduce atmospheric CO by storing C in their biomass. This has provided the impetus for world-wide tree planting initiatives to offset fossil-fuel emissions. However, forests interact with their environment in complex and multifaceted ways that must be considered for a balanced assessment of the value of planting trees.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
Sustainability of agricultural production and mitigation of global warming rely on the regeneration of soil organic carbon (SOC), in particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) forms. We conducted a global systematic meta-analysis of the effects of regenerative management practices on SOC, POC, and MAOC in cropland, finding: 1) no-till (NT) and cropping system intensification increase SOC (11.3% and 12.
View Article and Find Full Text PDFGrasslands store approximately one third of the global terrestrial carbon stocks and can act as an important soil carbon sink. Recent studies show that plant diversity increases soil organic carbon (SOC) storage by elevating carbon inputs to belowground biomass and promoting microbial necromass contribution to SOC storage. Climate change affects grassland SOC storage by modifying the processes of plant carbon inputs and microbial catabolism and anabolism.
View Article and Find Full Text PDFIntensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes.
View Article and Find Full Text PDFSoil organic carbon (SOC), as the largest terrestrial carbon pool, plays an important role in global carbon (C) cycling, which may be significantly impacted by global changes such as nitrogen (N) fertilization, elevated carbon dioxide (CO), warming, and increased precipitation. Yet, our ability to accurately detect and predict the impact of these global changes on SOC dynamics is still limited. Investigating SOC responses to global changes separately for mineral-associated organic carbon (MAOC) and the particulate organic carbon (POC) can aid in the understanding of overall SOC responses, because these are formed, protected, and lost through different pathways.
View Article and Find Full Text PDFMore than 10% of Australia's 49 M ha of grassland is considered degraded, prompting widespread interest in the management of these ecosystems to increase soil carbon (C) sequestration-with an emphasis on long-lived C storage. We know that management practices that increase plant biomass also increase C inputs to the soil, but we lack a quantitative understanding of the fate of soil C inputs into different soil organic carbon (SOC) fractions that have fundamentally different formation pathways and persistence in the soil. Our understanding of the factors that constrain SOC formation in these fractions is also limited, particularly within tropical climates.
View Article and Find Full Text PDFGrassland soils are a large reservoir of soil carbon (C) at risk of loss due to overgrazing in conventional grazing systems. By promoting regenerative grazing management practices that aim to increase soil C storage and soil health, grasslands have the potential to help alleviate rising atmospheric CO as well as sustain grass productivity across a vast area of land. Previous research has shown that rotational grazing, specifically adaptive multi-paddock (AMP) grazing that utilizes short-duration rotational grazing at high stocking densities, can increase soil C stocks in grassland ecosystems, but the extent and mechanisms are unknown.
View Article and Find Full Text PDFMicrobial-derived nitrogen (N) is now recognized as an important source of soil organic N. However, the mechanisms that govern the production of microbial necromass N, its turnover, and stabilization in soil remain poorly understood. To assess the effects of elevated temperature on bacterial and fungal necromass N production, turnover, and stabilization, we incubated N-labeled bacterial and fungal necromass under optimum moisture conditions at 10°C, 15°C, and 25°C.
View Article and Find Full Text PDFManaging soil organic matter (SOM) stocks to address global change challenges requires well-substantiated knowledge of SOM behavior that can be clearly communicated between scientists, management practitioners, and policy makers. However, SOM is incredibly complex and requires separation into multiple components with contrasting behavior in order to study and predict its dynamics. Numerous diverse SOM separation schemes are currently used, making cross-study comparisons difficult and hindering broad-scale generalizations.
View Article and Find Full Text PDFBiochar is a high carbon material resulting from biomass pyrolysis that, when applied to croplands, can increase soil carbon and soil water retention. Both effects are of critical importance in semi-arid regions, where carbon decline and desertification are the main drivers of soil degradation. Since most environmental services provided by soil are mediated by belowground biota, effects of biochar on soil microbial and invertebrate communities must be evaluated under field conditions before its agricultural application can be recommended.
View Article and Find Full Text PDFBoth elevated temperature and heavy metal contamination can have profound effects on microbial function and soil biogeochemical cycling. However, the interactive effects of heavy metal toxicity and temperature on microbial activity have been poorly understood. The aim of this study was to quantify the effect of temperature and cadmium (Cd) toxicity on alkaline phosphatase (ALP) produced by microbes to acquire phosphorus.
View Article and Find Full Text PDFSoil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices.
View Article and Find Full Text PDFWildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha of wood mulch, 20 t ha of biochar, and the combination of the two amendments with untreated, burned soils.
View Article and Find Full Text PDF