Publications by authors named "Francesca Cialdai"

Article Synopsis
  • The European Space Agency (ESA) regularly updates its science plans by talking to scientists about what they need to know.
  • The SSCWP 9 document focuses on "Biology in Space" and discusses important questions that scientists want to answer about how living things adapt to space.
  • One big question is how different organisms change at the molecular level when they are in microgravity, which could help both space missions and new technologies on Earth.
View Article and Find Full Text PDF

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses.

View Article and Find Full Text PDF

Background: The glomerulus is a highly complex system, composed of different interdependent cell types that are subjected to various mechanical stimuli. These stimuli regulate multiple cellular functions, and changes in these functions may contribute to tissue damage and disease progression. To date, our understanding of the mechanobiology of glomerular cells is limited, with most research focused on the adaptive response of podocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The white paper discusses the need for research on how changes in gravity impact animal and human cellular and tissue systems, which is vital for understanding health in space.
  • Current knowledge gaps hinder the development of accurate models to predict long-term health impacts for astronauts during extended missions beyond low Earth orbit.
  • Researchers recommend a more integrated approach to connect biological and physiological effects to better address space adaptation challenges and promote astronaut health during deep space missions.
View Article and Find Full Text PDF

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation.

View Article and Find Full Text PDF

Wound healing (WH) and the role fibroblasts play in the process, as well as healing impairment and fibroblast dysfunction, have been thoroughly reviewed by other authors. We treat these topics briefly, with the only aim of contextualizing the true focus of this review, namely, the microgravity-induced changes in fibroblast functions involved in WH. Microgravity is a condition typical of spaceflight.

View Article and Find Full Text PDF

The complexity of microglia phenotypes and their related functions compels the continuous study of microglia in diseases animal models. We demonstrated that oxygen-glucose deprivation (OGD) induced rapid, time- and space-dependent phenotypic microglia modifications in CA1 stratum pyramidalis (SP) and stratum radiatum (SR) of rat organotypic hippocampal slices as well as the degeneration of pyramidal neurons, especially in the outer layer of SP. Twenty-four h following OGD, many rod microglia formed trains of elongated cells spanning from the SR throughout the CA1, reaching the SP outer layer where they acquired a round-shaped amoeboid phagocytic head and phagocytosed most of the pyknotic, damaged neurons.

View Article and Find Full Text PDF

The target of human flight in space has changed from permanence on the International Space Station to missions beyond low earth orbit and the Lunar Gateway for deep space exploration and Missions to Mars. Several conditions affecting space missions had to be considered: for example the effect of weightlessness and radiations on the human body, behavioral health decrements or communication latency, and consumable resupply. Telemedicine and telerobotic applications, robot-assisted surgery with some hints on experimental surgical procedures carried out in previous missions, had to be considered as well.

View Article and Find Full Text PDF

Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood.

View Article and Find Full Text PDF

Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM).

View Article and Find Full Text PDF

Brain photobiomodulation (PBM) is an innovative treatment for a variety of neurological conditions, including cerebral ischemia. However, the capability of PBM for ischemic stroke needs to be further explored and its mechanisms of action remain currently unclear. The aim of the present research was to identify a treatment protocol capable of inducing neuroprotection and to investigate the molecular mechanisms activated by a dual-wavelength near infrared (NIR) laser source in an organotypic hippocampal slice model of hypoxia/ischemia.

View Article and Find Full Text PDF

The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe.

View Article and Find Full Text PDF

Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring.

View Article and Find Full Text PDF

Neuropathic pain is characterized by an uncertain etiology and by a poor response to common therapies. The ineffectiveness and the frequent side effects of the drugs used to counteract neuropathic pain call for the discovery of new therapeutic strategies. Laser therapy proved to be effective for reducing pain sensitivity thus improving the quality of life.

View Article and Find Full Text PDF

This work inserts in the research field regarding the effects of altered gravity conditions on biological plant processes. Pinus pinea seeds germination was studied in simulated microgravity (2x10g) and hypergravity (20g) conditions. The effects of simulated gravity were evaluated monitoring the levels of the key enzymes, involved in the main metabolic pathway during germination process of lipid-rich seeds (oilseeds): isocitrate lyase and malate synthase for glyoxylate cycle, 3-hydroxyacyl-CoA dehydrogenase for beta-oxidation, isocitrate dehydrogenase for Krebs cycle, pyruvate kinase for glycolysis and glucose 6 phosphate dehydrogenase for pentose phosphate shunt.

View Article and Find Full Text PDF

Over the past three decades, physicians have used laser sources for the management of different pain conditions obtaining controversial results that call for further investigations. In order to evaluate the pain relieving possibilities of photobiomodulation therapy (PBMT), we tested two near infrared (NIR) laser systems, with different power, against various kinds of persistent hyperalgesia animal models. In rats, articular pain was reproduced by the intra-articular injection of sodium monoiodoacetate (MIA) and complete Freund's adjuvant (CFA), while compressive neuropathy was modelled by the chronic constriction injury of the sciatic nerve (CCI).

View Article and Find Full Text PDF
Article Synopsis
  • Extremely low-frequency electromagnetic fields (ELF-EMFs) used in magnetotherapy operate below 100 Hz and have low magnetic field intensities, showing promise in treating conditions like skin diseases and inflammation.
  • A study exposed human skin cells (fibroblasts) to ELF-EMFs for 1.5 hours and found no change in cell viability, but a significant decrease in cell proliferation 24 hours later.
  • Increased expression of tubulin, a protein linked to cell structure, suggests that ELF-EMF exposure may trigger changes in cell behavior or development processes.
View Article and Find Full Text PDF

Clinical studies demonstrated the effectiveness of laser therapy in the management of postmastectomy lymphedema, a discomforting disease that can arise after surgery/radiotherapy and gets progressively worse and chronic. However, safety issues restrict the possibility to treat cancer patients with laser therapy, since the effects of laser radiation on cancer cell behavior are not completely known and the possibility of activating postmastectomy residual cancer cells must be considered. This paper reports the results of an in vitro study aimed to investigate the effect of a class IV, dual-wavelength (808 nm and 905 nm), NIR laser system on the behavior of two human breast adenocarcinoma cell lines (namely, MCF7 and MDA-MB361 cell lines), using human dermal fibroblasts as normal control.

View Article and Find Full Text PDF

Altered gravity is a strong physical cue able to elicit different cellular responses, representing a largely uninvestigated opportunity for tissue engineering/regenerative medicine applications. Our recent studies have shown that both proliferation and differentiation of C2C12 skeletal muscle cells can be enhanced by hypergravity treatment; given these results, PC12 neuron-like cells were chosen to test the hypothesis that hypergravity stimulation might also affect the behavior of neuronal cells, in particular promoting an enhanced differentiated phenotype. PC12 cells were thus cultured under differentiating conditions for either 12 h or 72 h before being stimulated with different values of hypergravity (50 g and 150 g).

View Article and Find Full Text PDF

The endothelial cells (ECs), which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they regulate local blood flow and other physiological processes. ECs are highly sensitive to mechanical stress, including hypergravity and microgravity. Indeed, they undergo morphological and functional changes in response to alterations of gravity.

View Article and Find Full Text PDF

Laser therapy is used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of this research was to get insight into possible benefits deriving from the application of an advanced IR laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of hypotrophic tissue. We studied the effect of IR laser treatment on proliferation, differentiation, cytoskeleton organization and global protein expression in C2C12 myoblasts.

View Article and Find Full Text PDF

During the last several years, evidence that various enzymes hydrolyze NAD into bioactive products prompted scientists to revisit or design strategies able to increase intracellular availability of the dinucleotide. However, plasma membrane permeability to NAD and the mitochondrial origin of the dinucleotide still wait to be clearly defined. Here, we report that intracellular NAD contents increased upon exposure of cell lines or primary cultures to exogenous NAD (eNAD).

View Article and Find Full Text PDF