A positron emission tomography (PET) tracer detecting α-synuclein pathology will improve the diagnosis, and ultimately the treatment of α-synuclein-related diseases. Here we show that the PET ligand, [F]ACI-12589, displays good in vitro affinity and specificity for pathological α-synuclein in tissues from patients with different α-synuclein-related disorders including Parkinson's disease (PD) and Multiple-System Atrophy (MSA) using autoradiography and radiobinding techniques. In the initial clinical evaluation we include 23 participants with α-synuclein related disorders, 11 with other neurodegenerative disorders and eight controls.
View Article and Find Full Text PDFTau aggregates represent a critical pathology in Alzheimer's disease (AD) and other forms of dementia. The extent of Tau neurofibrillary tangles across defined brain regions corresponds well to the observed level of cognitive decline in AD. Compound 1 (PI-2620) was recently identified as a promising Tau positron emission tomography tracer for AD and non-AD tauopathies.
View Article and Find Full Text PDFThe first candidate was tested in healthy controls and subjects with Alzheimer's disease (AD). As displayed off-target binding to monoamine oxidase A (MAO-A), a new lead with improved binding to Tau and decreased MAO-A binding was required. For compound optimization, Tau binding assays based on both human AD brain homogenate and Tau-paired helical filaments were employed.
View Article and Find Full Text PDFThe compound screening was initiated with a direct staining assay to identify compounds binding to Tau aggregates and not Abeta plaques using human brain sections derived from late stage Alzheimer's disease donors. The binding of Tau aggregate selective compounds was then quantitatively assessed with human brain derived paired helical filaments utilizing the label-free Back Scattering Interferometry assay. In vivo biodistribution experiments of selected fluorine-18 labeled compounds were performed in mice to assess brain uptake, brain washout, and defluorination.
View Article and Find Full Text PDFPurpose: Tau deposition is a key pathological feature of Alzheimer's disease (AD) and other neurodegenerative disorders. The spreading of tau neurofibrillary tangles across defined brain regions corresponds to the observed level of cognitive decline in AD. Positron-emission tomography (PET) has proved to be an important tool for the detection of amyloid-beta (Aβ) aggregates in the brain, and is currently being explored for detection of pathological misfolded tau in AD and other non-AD tauopathies.
View Article and Find Full Text PDFDendritic cells (DCs), and more recently lymph node stromal cells (LNSCs), have been described to tolerize self-reactive CD8(+) T cells in LNs. Although LNSCs express MHCII, it is unknown whether they can also impact CD4(+) T cell functions. We show that the promoter IV (pIV) of class II transactivator (CIITA), the master regulator of MHCII expression, controls endogenous MHCII expression by LNSCs.
View Article and Find Full Text PDFUntil recently, the known roles of lymphatic endothelial cells (LECs) in immune modulation were limited to directing immune cell trafficking and passively transporting peripheral Ags to lymph nodes. Recent studies demonstrated that LECs can directly suppress dendritic cell maturation and present peripheral tissue and tumor Ags for autoreactive T cell deletion. We asked whether LECs play a constitutive role in T cell deletion under homeostatic conditions.
View Article and Find Full Text PDFThe human epigenetic cell-cycle regulator HCF-1 undergoes an unusual proteolytic maturation process resulting in stably associated HCF-1(N) and HCF-1(C) subunits that regulate different aspects of the cell cycle. Proteolysis occurs at six centrally located HCF-1(PRO)-repeat sequences and is important for activation of HCF-1(C)-subunit functions in M phase progression. We show here that the HCF-1(PRO) repeat is recognized by O-linked β-N-acetylglucosamine transferase (OGT), which both O-GlcNAcylates the HCF-1(N) subunit and directly cleaves the HCF-1(PRO) repeat.
View Article and Find Full Text PDFSite-specific proteolytic processing plays important roles in the regulation of cellular activities. The histone modification activity of the human trithorax group mixed-lineage leukemia (MLL) protein and the cell cycle regulatory activity of the cell proliferation factor herpes simplex virus host cell factor 1 (HCF-1) are stimulated by cleavage of precursors that generates stable heterodimeric complexes. MLL is processed by a protease called taspase 1, whereas the precise mechanisms of HCF-1 maturation are unclear, although they are known to depend on a series of sequence repeats called HCF-1(PRO) repeats.
View Article and Find Full Text PDF