The HECT-type E3 ubiquitin WWP1 (also known as NEDD4-like E3 ubiquitin-protein ligase WWP1) acts as an oncogenic factor in acute myeloid leukemia (AML) cells. WWP1 overexpression in AML confers a proliferative advantage to leukemic blasts (abnormal immature white blood cells) and counteracts apoptotic cell death and differentiation. In an effort to elucidate the molecular basis of WWP1 oncogenic activities, we identified WWP1 as a previously unknown negative regulator of thioredoxin-interacting protein (TXNIP)-mediated reactive oxygen species (ROS) production in AML cells.
View Article and Find Full Text PDFThe uc.291 transcript controls keratinocytes differentiation by physical interaction with ACTL6A and subsequent induction of transcription of the genes belonging to the epidermal differentiation complex (EDC). Uc.
View Article and Find Full Text PDFAtherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes.
View Article and Find Full Text PDFEpithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes.
View Article and Find Full Text PDFHere, we present the case of a 47-year-old woman diagnosed with luminal B breast cancer subtype and provide an in-depth analysis of her gene mutations, chromosomal alterations, mRNA and protein expression changes. We found a point mutation in the FGFR2 gene, which is potentially hyper-activating the receptor function, along with over-expression of its ligand FGF20 due to genomic amplification. The patient also harbors somatic and germline mutations in some mismatch repair (MMR) genes, with a strong MMR mutational signature.
View Article and Find Full Text PDFNatural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals.
View Article and Find Full Text PDFApoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions.
View Article and Find Full Text PDFThe TP63 is an indispensable transcription factor for development and homeostasis of epithelia and its derived glandular tissue. It is also involved in female germline cell quality control, muscle and thymus development. It is expressed as multiple isoforms transcribed by two independent promoters, in addition to alternative splicing occurring at the mRNA 3'-UTR.
View Article and Find Full Text PDFUbiquitination-mediated proteolysis or regulation of proteins, ultimately executed by E3 ubiquitin ligases, control a wide array of cellular processes, including transcription, cell cycle, autophagy and apoptotic cell death. HECT-type E3 ubiquitin ligases can be distinguished from other subfamilies of E3 ubiquitin ligases because they have a C-terminal HECT domain that directly catalyzes the covalent attachment of ubiquitin to their substrate proteins. Deregulation of HECT-type E3-mediated ubiquitination plays a prominent role in cancer development and chemoresistance.
View Article and Find Full Text PDFThe ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs).
View Article and Find Full Text PDFCells
May 2020
Ubiquitination, a post-translational modification that involves a covalent attachment of ubiquitin to a protein substrate, is essential for cellular homeostatic maintenance. At the end of a three-enzyme cascade, E3 ubiquitin ligases (E3s) recruit substrates and promote or directly catalyze ubiquitin transfer to targets. These enzymes largely determine the specificity of the ubiquitination reaction.
View Article and Find Full Text PDFAutophagy is a conserved self-eating process that delivers cytoplasmic material to the lysosome to allow degradation of intracellular components, including soluble, unfolded and aggregated proteins, damaged organelles, and invading microorganisms. Autophagy provides a homeostatic control mechanism and is essential for balancing sources of energy in response to nutrient stress. Autophagic dysfunction or dysregulation has been implicated in several human pathologies, including cancer and neurodegeneration, and its modulation has substantial potential as a therapeutic strategy.
View Article and Find Full Text PDFAccumulating evidence has proved that deregulation of ΔNp63 expression plays an oncogenic role in head and neck squamous cell carcinomas (HNSCCs). Besides p63, the type 1-insulin-like growth factor (IGF) signalling pathway has been implicated in HNSCC development and progression. Most insulin/IGF1 signalling converges intracellularly onto the protein adaptor insulin receptor substrate-1 (IRS-1) that transmits signals from the receptor to downstream effectors, including the PI3K/AKT and the MAPK kinase pathways, which, ultimately, promote proliferation, invasion, and cell survival.
View Article and Find Full Text PDFOver the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes.
View Article and Find Full Text PDFSignificance: The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members.
View Article and Find Full Text PDFThe molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1.
View Article and Find Full Text PDFThe family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e.
View Article and Find Full Text PDFIn stratified epithelial and glandular tissues, homeostasis relies on the self-renewing capacity of stem cells, which are within the basal layer. The p53 family member p63 is an indispensable transcription factor for epithelial morphogenesis and stemness. A splice variant of the transcription factor p63 that lacks an amino-terminal domain, ΔNp63, is selectively found in the basal compartments of several ectoderm-derived tissues such as stratified and glandular epithelia, in which it is required for the replenishment of stem cells.
View Article and Find Full Text PDFThe predominant p63 isoform, ΔNp63, is a master regulator of normal epithelial stem cell (SC) maintenance. However, in vivo evidence of the regulation of cancer stem cell (CSC) properties by p63 is still limited. Here, we exploit the transgenic MMTV-ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) mouse model of carcinogenesis to dissect the role of p63 in the regulation of mammary CSC self-renewal and breast tumorigenesis.
View Article and Find Full Text PDF