Publications by authors named "Francesca Benvenuti"

Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga that has been traditionally used for over 25 years for its health-enhancing properties. Recent studies have shown the ability of a proprietary AFA extract (Klamin(®)) to improve mood, counteract anxiety, and enhance attention and learning. Aim of this study was to test the monoamine oxidase (MAO) inhibition activity of the same AFA extract and of its constituents phycocyanin (AFA-PC) and mycosporine-like aminoacids (AFA-MAAs).

View Article and Find Full Text PDF

The oxygen radical absorbance capacity (ORAC) assay has been widely used to quantify peroxyl radical scavenging capacity of pure antioxidant compounds and antioxidant plant/food extracts. However, it has never been applied to natural compounds derived from microalgae-based dietary supplements, namely, phycocyanin (PC) and phycocyanobilin (PCB), for which a strong radical scavenger activity has been documented. In this article, we applied the ORAC method to investigate the capacity of PC and PCB purified from the edible microalga Aphanizomenon flos-aquae to directly quench peroxyl radicals in comparison to well-known antioxidants molecules such as Trolox, ascorbic acid, and reduced glutathione.

View Article and Find Full Text PDF

Aphanizomenon flos-aquae (AFA) is a blue-green alga and represents a nutrient-dense food source. In this study the presence of phycocyanin (PC), a blue protein belonging to the photosynthetic apparatus, has been demonstrated in AFA. An efficient method for its separation has been set up: PC can be purified by a simple single step chromatographic run using a hydroxyapatite column (ratio A620/A280 of 4.

View Article and Find Full Text PDF

Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga (cyanophyta) rich in phycocyanin (PC), a photosynthetic pigment with antioxidant and anti-inflammatory properties. The purpose of this study was to evaluate the ability of a novel natural extract from AFA enriched with PC to protect normal human erythrocytes and plasma samples against oxidative damage in vitro. In red blood cells, oxidative hemolysis and lipid peroxidation induced by the aqueous peroxyl radical generator [2,2'-Azobis (2-amidinopropane) dihydrochloride, AAPH] were significantly lowered by the AFA extract in a time- and dose-dependent manner; at the same time, the depletion of cytosolic glutathione was delayed.

View Article and Find Full Text PDF

Objectives: To evaluate the condition of oxidative stress in patients undergoing prolonged exposure to hyperbaric oxygen (HBO) and the possible modifications of the antioxidant defense systems in the absence of antioxidant supplementation.

Design And Methods: Twelve patients exposed to 15 HBO treatments for pathological conditions related to hypoxia were included in the study. Oxidative stress indices as well as plasma and erythrocyte antioxidant levels were measured in blood samples collected both at the 1st and 15th HBO session.

View Article and Find Full Text PDF

Ethanol (EtOH) stimulates peptidergic primary sensory neurons via the activation of the transient receptor potential vanilloid-1 (TRPV1). EtOH is also known to trigger attacks of asthma in susceptible individuals. Our aim was to investigate whether EtOH produces airway inflammation via a TRPV1-dependent mechanism and to verify whether this effect is produced via a mechanism distinct from that of acetaldehyde (AcH).

View Article and Find Full Text PDF

A capsaicin-like endogenous ligand of vanilloid (VR1) receptors, N-arachidonoyl-dopamine, was recently identified in bovine and rat nervous tissue, and found to be almost as potent as capsaicin, and 5-10-fold more potent than anandamide, on these receptors, both in isolated cells and in vivo. Here we have investigated if N-arachidonoyl-dopamine also exerts other capsaicin-like effects at VR1 receptors in some isolated organ preparations. N-arachidonoyl-dopamine exerted a potent contractile response of guinea pig isolated bronchi (EC50=12.

View Article and Find Full Text PDF

1. The C-5 halogenation of the vanillyl moiety of resiniferatoxin, an ultrapotent agonist of vanilloid TRPV1 receptors, results in a potent antagonist for these receptors. Here, we have synthesized a series of halogenated derivatives of 'synthetic capsaicin' (nonanoyl vanillamide=nordihydrocapsaicin) differing for the nature (iodine, bromine-chlorine) and the regiochemistry (C-5, C-6) of the halogenation.

View Article and Find Full Text PDF