Fibroblast growth factor receptor (FGFR) signaling is a key modulator of cellular processes dysregulated in cancer. We recently found that the high expression of the mesenchymal FGFR2c variant in human pancreatic ductal adenocarcinoma (PDAC)-derived cells triggers the PKCε-mediated improvement of EMT and of MCL-1/SRC-dependent cell invasion. Since other membrane proteins can affect the receptor tyrosine kinase signaling, including transient receptor potential channels (TRPs), in this work, we investigated the role of TRPs in the FGFR2c/PKCε oncogenic axis.
View Article and Find Full Text PDFActinic keratosis (AK) is a preneoplastic skin disorder which can rapidly progress to cutaneous squamous cell carcinomas (SCCs). In light of our previous findings, indicating a possible oncogenic role of the mesenchymal isoform of FGFR2 (FGFR2c) aberrantly expressed in AK keratinocytes, we analyzed the possible tumor-promoting role of this receptor in the stromal AK counterpart in this work. Molecular analysis showed that, particularly in early AK lesions, FGFR2c dermal upregulation is accompanied by the downregulation of the cancer-associated fibroblasts (CAF) transcription repressor CSL, the upregulation of the CAF activator ULK3, and the consequent CAF gene induction.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy whose main characterizations are Kirsten Rat Sarcoma-activating mutations (KRAS) and a highly aggressive phenotype. Based on our recent findings demonstrating that the highly aberrant expression of the mesenchymal isoform of Fibroblast Growth Factor Receptor 2 (FGFR2c) in PDAC cells activates Protein-Kinase C Epsilon (PKCε), which in turn controls receptor-mediated epithelial to mesenchymal transition (EMT), here we investigated the involvement of these signaling events in the establishment of additional tumorigenic features. Using PDAC cell lines expressing divergent levels of the FGFR2c and stable protein depletion approaches by short hairpin RNA (shRNA), we found that FGFR2c expression and its PKCε downstream signaling are responsible for the invasive response to Fibroblast Growth Factor 2 (FGF2) and for anchorage-independent growth.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a treatment-resistant malignancy characterized by a high malignant phenotype including acquired EMT signature and deregulated autophagy. Since we have previously described that the aberrant expression of the mesenchymal FGFR2c and the triggering of the downstream PKCε signaling are involved in epidermal carcinogenesis, the aim of this work has been to assess the contribution of these oncogenic events also in the pancreatic context. Biochemical, molecular and immunofluorescence approaches showed that FGFR2c expression impacts on PDAC cell responsiveness to FGF2 in terms of intracellular signaling activation, upregulation of EMT-related transcription factors and modulation of epithelial and mesenchymal markers compatible with the pathological EMT.
View Article and Find Full Text PDFInfection with human papillomavirus type 16 (HPV16) is one of the major risk factors for the development of cervical cancer. Our previous studies have demonstrated the involvement of the early oncoprotein E5 of HPV16 (16E5) in the altered isoform switch of fibroblast growth factor receptor 2 (FGFR2) and the consequent expression in human keratinocytes of the mesenchymal FGFR2c isoform, whose aberrant signaling leads to EMT, invasiveness, and dysregulated differentiation. Here, we aimed to establish the possible direct link between these pathological features or the appearance of FGFR2c and the expression of 16E5 in low-grade squamous intraepithelial lesions (LSILs).
View Article and Find Full Text PDFBiology (Basel)
April 2021
Actinic keratosis (AK) is the ultra violet (UV)-induced preneoplastic skin lesion clinically classified in low (KIN I), intermediate (KIN II), and high (KIN III) grade lesions. In this work we analyzed the expression of Fibroblast Growth Factor Receptors (FGFRs), as well as of keratinocyte differentiation and epithelial-to-mesenchymal transition (EMT)-related markers in differentially graded AK lesions, in order to identify specific expression profiles that could be predictive for direct progression of some KIN I lesions towards squamous cell carcinoma (SCC). Our molecular analysis showed that the keratinocyte differentiation markers keratin 1 (K1), desmoglein-1 (DSG1), and filaggrin (FIL) were progressively downregulated in KIN I, II, and III lesions, while the modulation of epithelial/mesenchymal markers and the induction of the transcription factors Snail1 and Zinc finger E-box-binding homeobox 1 (ZEB1) compatible with pathological EMT, even if observable, did not appear to correlate with AK progression.
View Article and Find Full Text PDFSignalling of the epithelial splicing variant of fibroblast growth factor receptor 2 (FGFR2b) triggers both differentiation and autophagy, while the aberrant expression of the mesenchymal FGFR2c isoform in epithelial cells induces impaired differentiation, inhibition of autophagy as well as the induction of the epithelial-mesenchymal transition (EMT). In light of the widely proposed negative loop linking autophagy and EMT in the early steps of carcinogenesis, here we investigated the possible involvement of FGFR2c aberrant expression and signalling in orchestrating this crosstalk in human keratinocytes. Biochemical, molecular, quantitative immunofluorescence analysis and in vitro invasion assays, coupled to the use of specific substrate inhibitors and transient or stable silencing approaches, showed that AKT/MTOR and PKCε are the two hub signalling pathways, downstream FGFR2c, intersecting with each other in the control of both the inhibition of autophagy and the induction of EMT and invasive behaviour.
View Article and Find Full Text PDFBackground: The epithelial isoform of the fibroblast growth factor receptor 2 (FGFR2b) controls the entire program of keratinocyte differentiation via the sequential involvement of protein kinase C (PKC) δ and PKCα. In contrast, the FGFR2 isoform switch and the aberrant expression of the mesenchymal FGFR2c isoform leads to impairment of differentiation, epithelial-mesenchymal transition (EMT) and tumorigenic features. Aim of our present study was to contribute in clarifying the complex network of signaling pathways involved in the FGFR2c-mediated oncogenic outcomes focusing on PKCε, which appears to be involved in the induction of EMT and tumorigenesis in several epithelial contexts.
View Article and Find Full Text PDFSignaling of the epithelial splice variant of fibroblast growth factor receptor 2 (FGFR2b) triggers both differentiation and autophagy, while the aberrant expression of the mesenchymal FGFR2c isoform in epithelial cells induces impaired differentiation, epithelial mesenchymal transition (EMT) and tumorigenic features. Here we analyzed in the human keratinocyte cell line, as well as in primary cultured cells, the possible impact of FGFR2c forced expression on the autophagic process. Biochemical and quantitative immunofluorescence analysis, coupled to the use of autophagic flux sensors, specific substrate inhibitors or silencing approaches, showed that ectopic expression and the activation of FGFR2c inhibit the autophagosome formation and that AKT/MTOR is the downstream signaling mainly involved.
View Article and Find Full Text PDFThe tumor suppressor epithelial isoform of the fibroblast growth factor receptor 2 (FGFR2b) induces human keratinocyte early differentiation. Moreover, protein kinases C (PKCs) are known to regulate the differentiation program in several cellular contexts, including keratinocytes. Therefore, in this paper we propose to clarify if FGFR2b could play a role also in the late steps of keratinocyte differentiation and to assess if this receptor-induced process would sequentially involve PKCδ and PKCα isoforms.
View Article and Find Full Text PDFFibroblast growth factor receptor 2b (FGFR2b) is a receptor tyrosine kinase expressed exclusively in epithelial cells. We previously demonstrated that FGFR2b induces autophagy and that this process is required for the triggering of FGFR2b-mediated early differentiation of keratinocytes. However, the molecular mechanisms regulating this interplay remain to be elucidated.
View Article and Find Full Text PDFThe altered isoform switching of the fibroblast growth factor receptor 2 (FGFR2) and aberrant expression of the mesenchymal FGFR2c isoform in epithelial cells is involved in cancer progression. We have recently described that the ectopic expression of FGFR2c in normal human keratinocytes induces epithelial-mesenchymal transition and leads to invasiveness and anchorage-independent growth. Here, we extended our analysis to the effects of this FGFR2c forced expression on human keratinocyte differentiation and stratification.
View Article and Find Full Text PDFSignalling of the epithelial splicing variant of the fibroblast growth factor receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human keratinocytes. Here, we investigated, in the cell model of HaCaT keratinocytes, whether the two processes might be related and the possible involvement of PLCγ signalling. Using fluorescence and electron microscopy, we demonstrated that the FGFR2b-induced phagocytosis and autophagy involve converging autophagosomal and phagosomal compartments.
View Article and Find Full Text PDFDendritic cells (DCs) are the only antigen-presenting cells able to prime T cells and cross-prime antigen-specific CD8 T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the mechanisms underlying efficient antigen cross-processing and presentation are not fully understood.
View Article and Find Full Text PDFThe FGFRs are receptor tyrosine kinases expressed by tissue-specific alternative splicing in epithelial IIIb or mesenchymal IIIc isoforms. Deregulation of FGF/FGFR signaling unbalances the epithelial-stromal homeostasis and may lead to cancer development. In the epithelial-context, while FGFR2b/KGFR acts as tumor suppressor, FGFR2c appears to play an oncogenic role.
View Article and Find Full Text PDFPatients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities.
View Article and Find Full Text PDFAutophagy plays key roles during host defense against pathogens, but viruses have evolved strategies to block the process or to exploit it for replication and successful infection. The E5 oncoprotein of human papillomavirus type 16 (HPV16 E5) perturbs epithelial homeostasis down-regulating the expression of the keratinocyte growth factor receptor (KGFR/FGFR2b), whose signaling induces autophagy. Here we investigated the possible effects of 16E5 on autophagy in human keratinocytes expressing the viral protein.
View Article and Find Full Text PDFThe E5 oncoprotein of the human papillomavirus type 16 (HPV16 E5) deregulates epithelial homeostasis through the modulation of receptor tyrosine kinases and their signaling. Accordingly, the fibroblast growth factor receptor 2b (FGFR2b/KGFR), epithelial splicing transcript variant of the FGFR2, is down-modulated by the viral protein expression, leading to impairment of keratinocyte differentiation. Here, we report that, in cell models of transfected human keratinocytes as well as in cervical epithelial cells containing episomal HPV16, the down-regulation of FGFR2b induced by 16E5 is associated with the aberrant expression of the mesenchymal FGFR2c isoform as a consequence of splicing switch: in fact, quantitative RT-PCR analysis showed that this molecular event is transcriptionally regulated by the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) and is able to produce effects synergistic with those caused by TGFβ treatment.
View Article and Find Full Text PDFTumor-associated glycoproteins are a group of antigens with high immunogenic interest: The glycoforms generated by the aberrant glycosylation are tumor-specific and the novel glycoepitopes exposed can be targets of tumor-specific immune responses. The MUC1 antigen is one of the most relevant tumor-associated glycoproteins. In cancer, MUC1 loses polarity and becomes overexpressed and hypoglycosylated.
View Article and Find Full Text PDFAutophagy is a degradative pathway through which cells overcome stressful conditions and rapidly change their phenotype during differentiation. Despite its protective role, when exacerbated, autophagy may lead to cell death. Several growth factors involved in cell survival and in preventing differentiation are able to inhibit autophagy.
View Article and Find Full Text PDF