Enzymes are powerful tools in organic synthesis that are able to catalyse a wide variety of selective chemical transformations under mild and environmentally friendly conditions. Enzymes such as the lipases have also found applications in the synthesis and degradation of polymeric materials. However, the use of these natural catalysts in the synthesis and the post-synthetic modification of dendrimers and hyperbranched molecules is an application of chemistry yet to be explored extensively.
View Article and Find Full Text PDFIn this report, we present the application of samarium diiodide induced cyclisations of naphthyl-substituted ketones towards an easy and stereoselective access to tri- and tetracyclic-functionalised compounds. Typical naphthalene derivatives were studied to investigate the scope and limitations of this novel cyclisation process. The model substrates studied demonstrate that the samarium ketyl cyclisations are essentially restricted to the formation of six-membered rings.
View Article and Find Full Text PDFThe synthesis of a series of poly(aromatic amide) dendrimers up to the second generation is described herein. The AB(2) building block used throughout the synthesis of the dendrimers was the allyl ester of 3,5-diaminocinnamic acid, which has been synthesized from 3,5-dinitrobenzoic acid in good yield with use of a four-step procedure. Dendron synthesis was achieved via a convergent approach with use of a sequence of deprotection/coupling steps.
View Article and Find Full Text PDF