As artificial intelligence for image segmentation becomes increasingly available, the question whether these solutions generalize between different hospitals and geographies arises. The present study addresses this question by comparing multi-institutional models to site-specific models. Using CT data sets from four clinics for organs-at-risk of the female breast, female pelvis and male pelvis, we differentiate between the effect from population differences and differences in clinical practice.
View Article and Find Full Text PDFRadiation therapy is one of the key cancer treatment options. To avoid adverse effects in the healthy tissue, the treatment plan needs to be based on accurate anatomical models of the patient. In this work, an automatic segmentation solution for both female breasts and the heart is constructed using deep learning.
View Article and Find Full Text PDF