Publications by authors named "Francesca A Vaccaro"

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair.

View Article and Find Full Text PDF

G-protein metallochaperone MeaB in bacteria [methylmalonic aciduria type A (MMAA) in humans] is responsible for facilitating the delivery of adenosylcobalamin (AdoCbl) to methylmalonyl-CoA mutase (MCM), the only AdoCbl-dependent enzyme in humans. Genetic defects in the switch III region of MMAA lead to the genetic disorder methylmalonic aciduria in which the body is unable to process certain lipids. Here, we present a crystal structure of MeaB bound to a nonhydrolyzable guanosine triphosphate (GTP) analog guanosine-5'-[(β,γ)-methyleno]triphosphate (GMPPCP) with the Cbl-binding domain of its target mutase enzyme (MCM).

View Article and Find Full Text PDF

Metalloenzymes catalyze a diverse set of challenging chemical reactions that are essential for life. These metalloenzymes rely on a wide range of metallocofactors, from single metal ions to complicated metallic clusters. Incorporation of metal ions and metallocofactors into apo-proteins often requires the assistance of proteins known as metallochaperones.

View Article and Find Full Text PDF

The asymmetric unit of the title salt, C7H7N2 (+)·BF4 (-), comprises two independent but nearly identical formula units. The solid-state structure comprises corrugated layers of cations and anions, formed by C-H⋯F hydrogen bonding, that are approximately parallel to (010). Further C-H⋯F hydrogen bonding consolidates the three-dimensional architecture.

View Article and Find Full Text PDF