Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication.
View Article and Find Full Text PDFExtracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood.
View Article and Find Full Text PDFAs neurons age, they show a decrease in their ability to degrade proteins and membranes. Because undegraded material is a source of toxic products, defects in degradation are associated with reduced cell function and survival. However, there are very few dead neurons in the aging brain, suggesting the action of compensatory mechanisms.
View Article and Find Full Text PDFIn humans, a considerable number of the autopsy samples of cognitively normal individuals aged between 57 and 102 years have revealed the presence of amyloid plaques, one of the typical signs of AD, indicating that many of us use mechanisms that defend ourselves from the toxic consequences of Aß. The human APP NL/F (hAPP NL/F) knockin mouse appears as the ideal mouse model to identify these mechanisms, since they have high Aß42 levels at an early age and moderate signs of disease when old. Here we show that in these mice, the brain levels of the hemoprotein Neuroglobin (Ngb) increase with age, in parallel with the increase in Aß42.
View Article and Find Full Text PDFAlzheimer's disease (AD) is tightly linked to oxidative stress since amyloid beta-peptide (A) aggregates generate free radicals. Moreover, the aggregation of A is increased by oxidative stress, and the neurotoxicity induced by the oligomers and fibrils is in part mediated by free radicals. Interestingly, it has been reported that oxidative stress can also induce BACE1 transcription and expression.
View Article and Find Full Text PDFThe finding of an effective cure or treatment for neurodegenerative diseases is one of the biggest challenges for this century. Although these diseases show different clinical manifestations, the presence of toxic protein aggregates in the brain of patients is a common feature to all of them, suggesting a loss of protein homeostasis. Aging, the primary risk factor for the majority of neurodegenerative disorders, is linked to the impairment of degradative compartments such as lysosomes and autophagosomes.
View Article and Find Full Text PDFHuman life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer's disease, which affects millions of people worldwide.
View Article and Find Full Text PDFProgressive cerebral accumulation of tau aggregates is a defining feature of Alzheimer's disease (AD). A popular theory that seeks to explain the apparent spread of neurofibrillary tangle pathology proposes that aggregated tau is passed from neuron to neuron. Such a templated seeding process requires that the transferred tau contains the microtubule binding repeat domains that are necessary for aggregation.
View Article and Find Full Text PDFEMBO Mol Med
January 2018
In a most simplified way, we can say that much of the symptomatology that characterizes Alzheimer's disease (AD) can be attributed to a cascade of toxic events initiated by the presence in the interstitial space of the brain of oligomers of the β‐amyloid peptide (Aβ) peptide, a cleavage by‐product of the Amyloid precursor protein (APP). Intuitively, it follows that the amyloid peptide is the ideal target to combat this disease. However, several anti‐Aβ therapies failed in clinical trials devoted to find a treatment for AD.
View Article and Find Full Text PDFBackground: The mechanisms behind Aβ-peptide accumulation in non-familial Alzheimer's disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aβ production by interacting to γ-secretase.
Methods: We searched for tetraspanins with altered expression in AD brains.
Tetraspanins (Tspan) are transmembrane proteins with important scaffold and signalling functions. Deletions of Tetraspanin 6 (Tspan6) gene, a member of the tetraspanin family, have been reported in patients with Epilepsy Female-restricted with Mental Retardation (EFMR). Interestingly, mutations in Tspan7, highly homologous to Tspan6, are associated with X-linked intellectual disability, suggesting that these two proteins are important for cognition.
View Article and Find Full Text PDFAims: Hippocampus is the brain center for memory formation, a process that requires synaptogenesis. However, hippocampus is dramatically compromised in Alzheimer's disease due to the accumulation of amyloid β-peptide, whose production is initiated by β-site APP Cleaving Enzyme 1 (BACE1). It is known that pathological stressors activate BACE1 translation through the phosphorylation of the eukaryotic initiation factor-2α (eIF2α) by GCN2, PERK, or PKR kinases, leading to amyloidogenesis.
View Article and Find Full Text PDFIschemic stroke is an acute vascular event that compromises neuronal viability, and identification of the pathophysiological mechanisms is critical for its correct management. Ischemia produces increased nitric oxide synthesis to recover blood flow but also induces a free radical burst. Nitric oxide and superoxide anion react to generate peroxynitrite that nitrates tyrosines.
View Article and Find Full Text PDFAmyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect.
View Article and Find Full Text PDFIschemic stroke is an acute vascular event that obstructs blood supply to the brain, producing irreversible damage that affects neurons but also glial and brain vessel cells. Immediately after the stroke, the ischemic tissue produces nitric oxide (NO) to recover blood perfusion but also produces superoxide anion. These compounds interact, producing peroxynitrite, which irreversibly nitrates protein tyrosines.
View Article and Find Full Text PDFInherited familial Alzheimer's disease (AD) is characterized by small increases in the ratio of Aβ42 versus Aβ40 peptide which is thought to drive the amyloid plaque formation in the brain of these patients. Little is known however whether ageing, the major risk factor for sporadic AD, affects amyloid beta-peptide (Aβ) generation as well. Here we demonstrate that the secretion of Aβ is enhanced in an in vitro model of neuronal ageing, correlating with an increase in γ-secretase complex formation.
View Article and Find Full Text PDFClinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related.
View Article and Find Full Text PDFSeveral studies suggest that the generation of Aβ is highly dependent on the levels of cholesterol within membranes' detergent-resistant microdomains (DRM). Indeed, the β-amyloid precursor protein (APP) cleaving machinery, namely β- and γ-secretases, has been shown to be present in DRM and its activity depends on membrane cholesterol levels. Counterintuitive to the localization of the cleavage machinery, the substrate, APP, localizes to membranes' detergent-soluble microdomains enriched in phospholipids (PL), indicating that Aβ generation is highly dependent on the capacity of enzyme and substrate to diffuse along the lateral plane of the membrane and therefore on the internal equilibrium of the different lipids of DRM and non-DRM domains.
View Article and Find Full Text PDFBACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß) in Alzheimer's disease (AD) brains. Normally, its expression is constitutively inhibited due to the presence of the 5'untranslated region (5'UTR) in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF)2-alpha, which reverses the inhibitory effect exerted by BACE1 5'UTR.
View Article and Find Full Text PDFDifferent mechanisms including oxidative stress are proposed for amyloid-β peptide (Aβ) neurotoxicity, and here we contribute to demonstrate that nitro-oxidative stress is playing a key role. Yeasts are a well-known model for H2O2 toxicity. Interestingly, yeast cell wall prevents interaction of Aβ fibrils with membrane receptors or calcium channels and we found a significant viability reduction in yeasts when challenged with Aβ fibrils.
View Article and Find Full Text PDFAlzheimer's disease neuropathology is characterized by neuronal death, amyloid beta-peptide deposits and neurofibrillary tangles composed of paired helical filaments of tau protein. Although crucial for our understanding of the pathogenesis of Alzheimer's disease, the molecular mechanisms linking amyloid beta-peptide and paired helical filaments remain unknown. Here, we show that amyloid beta-peptide-induced nitro-oxidative damage promotes the nitrotyrosination of the glycolytic enzyme triosephosphate isomerase in human neuroblastoma cells.
View Article and Find Full Text PDFCerebral amyloid angiopathy, associated to most cases of Alzheimer's disease (AD), is characterized by the deposition of amyloid ss-peptide (Ass) in brain vessels, although the origin of the vascular amyloid deposits is still controversial: neuronal versus vascular. In the present work, we demonstrate that primary cultures of human cerebral vascular smooth muscle cells (HC-VSMCs) have all the secretases involved in amyloid ss-protein precursor (APP) cleavage and produce Ass(1-40) and Ass(1-42). Oxidative stress, a key factor in the etiology and pathophysiology of AD, up-regulates ss-site APP cleaving enzyme 1 (BACE1) expression, as well as Ass(1-40) and Ass(1-42) secretion in HC-VSMCs.
View Article and Find Full Text PDF