Publications by authors named "Francesc Piferrer"

Genes involved in gonadal sex differentiation have been traditionally thought to be fairly conserved across vertebrates, but this has been lately questioned. Here, we performed the first comparative analysis of gonadal transcriptomes across vertebrates, from fish to mammals. Our results unambiguously show an extraordinary overall variability in gene activation and repression programs without a phylogenetic pattern.

View Article and Find Full Text PDF

Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research has defined the relevance of the interactions between the environment and epigenetics playing a key role in the final phenotype.

View Article and Find Full Text PDF

Female-to-male sex reversals (pseudomales) are common in lower vertebrates and have been found in natural populations, which is a concern under rapid changes in environmental conditions. Pseudomales can exhibit altered spermatogenesis. However, the regulatory mechanisms underlying pseudomale spermatogenesis remain unclear.

View Article and Find Full Text PDF

In the last decade, a plethora of microRNAs (miRNAs) has been reported in a wide variety of physiological processes, including reproduction, in many aquatic organisms. However, miRNAome alterations occurred by environmental cues due to water temperature increment have not yet been elucidated. With the aim to identify epigenetic regulations mediated by miRNAs in the gonads in a climate change scenario, the animal model zebrafish (Danio rerio) were subjected to high temperatures during sex differentiation, a treatment that results in male-skewed sex ratios in the adulthood.

View Article and Find Full Text PDF

The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects.

View Article and Find Full Text PDF

Background: Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore relationships between genes. However, an approach combining both methods, i.

View Article and Find Full Text PDF

Modern humans exhibit phenotypic traits and molecular events shared with other domesticates that are thought to be by-products of selection for reduced aggression. This is the human self-domestication hypothesis. As one of the first types of responses to a novel environment, epigenetic changes may have also facilitated early self-domestication in humans.

View Article and Find Full Text PDF

Sexual systems are highly diverse and have profound consequences for population dynamics and resilience. Yet, little is known about how they evolved. Using phylogenetic Bayesian modelling and a sample of 4614 species, we show that gonochorism is the likely ancestral condition in teleost fish.

View Article and Find Full Text PDF

Sex ratio depends on sex determination mechanisms and is a key demographic parameter determining population viability and resilience to natural and anthropogenic stressors. There is increasing evidence that the environment can alter sex ratio even in genetically sex-determined species (GSD), as elevated temperature can cause female-to-male sex reversal (neomales). Alarmingly, neomales are being discovered in natural populations of several fish, amphibian and reptile species worldwide.

View Article and Find Full Text PDF

Oogenesis is a highly orchestrated process that depends on regulation by autocrine/paracrine hormones and growth factors. However, many details of the molecular mechanisms that regulate fish oogenesis remain elusive. Here, we performed a single-cell RNA sequencing (scRNA-seq) analysis of the molecular signatures of distinct ovarian cell categories in adult Chinese tongue sole ().

View Article and Find Full Text PDF

Background: Fishes are the one of the most diverse groups of animals with respect to their modes of sex determination, providing unique models for uncovering the evolutionary and molecular mechanisms underlying sex determination and reversal. Here, we have investigated how sex is determined in a species of both commercial and ecological importance, the Siamese fighting fish Betta splendens.

Results: We conducted association mapping on four commercial and two wild populations of B.

View Article and Find Full Text PDF

In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species.

View Article and Find Full Text PDF

The hypothesis that epigenetic mechanisms of gene expression regulation have two main roles in vertebrate sex is presented. First, and within a given generation, by contributing to the acquisition and maintenance of (i) the male female function once during the lifetime in individuals of gonochoristic species; and (ii) the male female function in the same individual, either at the same time in simultaneous hermaphrodites, or first as one sex and then as the other in sequential hermaphrodites. Second, if environmental conditions change, epigenetic mechanisms may have also a role across generations, by providing the necessary phenotypic plasticity to facilitate the transition: (i) from one sexual system to another, or (ii) from one sex-determining mechanism to another.

View Article and Find Full Text PDF

DNA methylation is one of the main epigenetic mechanisms that regulate gene expression in a manner that depends on the genomic context and varies considerably across taxa. This DNA modification was first found in nuclear genomes of eukaryote several decades ago and it has also been described in mitochondrial DNA. It has recently been shown that mitochondrial DNA is extensively methylated in mammals and other vertebrates.

View Article and Find Full Text PDF

In vertebrates, the somatotropic axis comprising the pituitary gland, liver and muscle plays a major role in myogenesis. Its output in terms of muscle growth is highly affected by nutritional and environmental cues, and thus likely epigenetically regulated. Hydroxymethylation is emerging as a DNA modification that modulates gene expression but a holistic characterization of the hydroxymethylome of the somatotropic axis has not been investigated to date.

View Article and Find Full Text PDF

Sex determination systems in vertebrates vary along a continuum from genetic (GSD) to environmental sex determination (ESD). Individuals that show a sexual phenotype opposite to their genotypic sex are called sex reversals. Aside from genetic elements, temperature, sex steroids, and exogenous chemicals are common factors triggering sex reversal, a phenomenon that may occur even in strict GSD species.

View Article and Find Full Text PDF

Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long-fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations.

View Article and Find Full Text PDF

Background: Understanding sex determination (SD) across taxa is a major challenge for evolutionary biology. The new genomic tools are paving the way to identify genomic features underlying SD in fish, a group frequently showing limited sex chromosome differentiation and high SD evolutionary turnover. Turbot (Scophthalmus maximus) is a commercially important flatfish with an undifferentiated ZW/ZZ SD system and remarkable sexual dimorphism.

View Article and Find Full Text PDF

Ocean global warming affects the distribution, life history and physiology of marine life. Extreme events, like marine heatwaves, are increasing in frequency and intensity. During sensitive stages of early fish development, the consequences may be long-lasting and mediated by epigenetic mechanisms.

View Article and Find Full Text PDF

Accumulating evidence shows that environmental changes can affect population sex ratios through epigenetic regulation of gene expression in species where sex depends on both genetic and environmental cues. Sometimes, altered sex ratios persist in the next generation even when the environmental cue is no longer present (a multigenerational effect). However, evidence of transgenerational effects (i.

View Article and Find Full Text PDF

The Sparids are an ideal group of fishes in which to study the evolution of sexual systems since they exhibit a great sexual diversity, from gonochorism (separate sexes) to protandrous (male-first) and protogynous (female-first) sequential hermaphroditism (sex change). According to the size-advantage model (SAM), selection should favour sex change when the second sex achieves greater reproductive success at a larger body size than the first sex. Using phylogenetic comparative methods and a sample of 68 sparid species, we show that protogyny and protandry evolve from gonochorism but evolutionary transitions between these two forms of sequential hermaphroditism are unlikely to happen.

View Article and Find Full Text PDF

The sex of Chinese tongue sole () is determined by both genetic sex determination (GSD) and environmental sex determination (ESD), making it an ideal model to study the relationship between sex-determination and temperature. In the present study, transcriptomes of undifferentiated gonads from genetic females and males, as well as differentiated gonads from males, females, and pseudomales under high and normal temperature treatments were generated for comparative transcriptomic analysis. A mean of 68.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfds9mqvn0pe5crs3li3q1n9006ll6oqi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once