Robust and reliable estimates of demographic parameters are essential to understand population dynamics. Natal dispersal is a common process in monitored populations and can cause underestimations of survival and dispersal due to permanent emigration. Here, we present a multistate Bayesian capture-mark-recapture approach based on a joint estimation of natal dispersal kernel and detection probabilities to address biases in survival, dispersal, and related demographic parameters when dispersal information is limited.
View Article and Find Full Text PDFHuman activities cause changes to occur in the environment that affect resource availability for wildlife. The increase in the human population of cities has led to a rise in the amount of waste deposited in landfills, installations that have become a new food resource for both pest and threatened species such as vultures. In this study we used stable isotope analysis (SIA) and conventional identification of food remains from Egyptian Vultures (Neophron percnopterus) to assess the applicability of SIA as a new tool for determining the composition of the diets of vultures, a group of avian scavengers that is threatened worldwide.
View Article and Find Full Text PDFAnimal body condition refers to the health and physiological state of individuals, and multiple parameters have been proposed to quantify this key concept. Food intake is one of the main determinants of individual body condition and much debate has been generated on how diet relates to body condition. We investigated this relationship in free-living Bonelli's eagle (Aquila fasciata) nestlings sampled at two geographically distant populations in Spain.
View Article and Find Full Text PDFInter-individual diet variation within populations is likely to have important ecological and evolutionary implications. The diet-fitness relationships at the individual level and the emerging population processes are, however, poorly understood for most avian predators inhabiting complex terrestrial ecosystems. In this study, we use an isotopic approach to assess the trophic ecology of nestlings in a long-lived raptor, the Bonelli's eagle Aquila fasciata, and investigate whether nestling dietary breath and main prey consumption can affect the species' reproductive performance at two spatial scales: territories within populations and populations over a large geographic area.
View Article and Find Full Text PDF