Breast tumors and their derived circulating cancer cells express the leukocyte β integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype.
View Article and Find Full Text PDFClimate change is gradual, but it can also cause brief extreme heat waves that can exceed the upper thermal limit of any one organism. To study the evolutionary potential of upper thermal tolerance, we evolved the cold-adapted Antarctic bacterium to survive at 30°C, beyond its ancestral thermal limit. This high-temperature adaptation occurred rapidly and in multiple populations.
View Article and Find Full Text PDFThe metastatic spread of cancer is achieved by the haematogenous dissemination of circulating tumour cells (CTCs). Generally, however, the temporal dynamics that dictate the generation of metastasis-competent CTCs are largely uncharacterized, and it is often assumed that CTCs are constantly shed from growing tumours or are shed as a consequence of mechanical insults. Here we observe a striking and unexpected pattern of CTC generation dynamics in both patients with breast cancer and mouse models, highlighting that most spontaneous CTC intravasation events occur during sleep.
View Article and Find Full Text PDFUnlabelled: Blood-borne metastasis of breast cancer involves a series of tightly regulated sequential steps, including the growth of a primary tumor lesion, intravasation of circulating tumor cells (CTC), and adaptation in various distant metastatic sites. The genes orchestrating each of these steps are poorly understood in physiologically relevant contexts, owing to the rarity of experimental models that faithfully recapitulate the biology, growth kinetics, and tropism of human breast cancer. Here, we conducted an in vivo loss-of-function CRISPR screen in newly derived CTC xenografts, unique in their ability to spontaneously mirror the human disease, and identified specific genetic dependencies for each step of the metastatic process.
View Article and Find Full Text PDFCirculating tumor cells are tumor-derived pioneers responsible for the metastatic spread of cancer. Here, we outline recent discoveries, challenges, and future trends for circulating tumor cell investigations, arguing that the time is coming for translation of this work into clinical practice.
View Article and Find Full Text PDFThe analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis.
View Article and Find Full Text PDFRecent Results Cancer Res
October 2019
Next-generation sequencing of DNA and RNA obtained from liquid biopsies of cancer patients may reveal important insights into disease progression and metastasis formation, and it holds the promise to enable new methods for noninvasive screening and clinical decision support. However, implementing liquid biopsy sequencing protocols is challenged by capturing circulating tumor cells or cell-free tumor DNA from blood samples, by amplifying genomic DNA and RNA in a reliable and unbiased manner, and by extracting biologically meaningful signals from the noisy sequencing data. In this chapter, we discuss computational methods for the analysis of DNA and RNA sequencing data obtained from liquid biopsies, addressing these challenges.
View Article and Find Full Text PDFBlood-borne metastasis accounts for most cancer-related deaths and involves circulating tumor cells (CTCs) that are successful in establishing new tumors at distant sites. CTCs are found in the bloodstream of patients as single cells (single CTCs) or as multicellular aggregates (CTC clusters and CTC-white blood cell clusters), with the latter displaying a higher metastatic ability. Beyond enumeration, phenotypic and molecular analysis is extraordinarily important to dissect CTC biology and to identify actionable vulnerabilities.
View Article and Find Full Text PDFBackground: Group 2 innate lymphoid cells (ILC2s) play critical roles in induction and exacerbation of allergic airway inflammation. Thus clarification of the mechanisms that underlie regulation of ILC2 activation has received significant attention. Although innate lymphoid cells are divided into 3 major subsets that mirror helper effector T-cell subsets, counterpart subsets of regulatory T cells have not been well characterized.
View Article and Find Full Text PDFThe ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale.
View Article and Find Full Text PDFBackground: The presence of circulating tumor cells (CTCs) in patients with breast cancer correlates to a bad prognosis. Yet, CTCs are detectable in only a minority of patients with progressive breast cancer, and factors that influence the abundance of CTCs remain elusive.
Methods: We conducted CTC isolation and enumeration in a selected group of 73 consecutive patients characterized by progressive invasive breast cancer, high tumor load and treatment discontinuation at the time of CTC isolation.
Human glioblastoma (GBM) is a highly aggressive, invasive and hypervascularised malignant brain cancer. Individual circulating tumour cells (CTCs) are sporadically found in GBM patients, yet it is unclear whether multicellular CTC clusters are generated in this disease and whether they can bypass the physical hurdle of the blood-brain barrier. Here, we assessed CTC presence and composition at multiple time points in 13 patients with progressing GBM during an open-label phase 1/2a study with the microtubule inhibitor BAL101553.
View Article and Find Full Text PDFJoint pain causes significant morbidity in osteoarthritis (OA). The aetiology of joint pain in OA is not well understood. The synovial membrane as an innervated joint structure represents a potential source of peripheral pain in OA.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) are an emerging target for cancer therapy as they promote tumour growth and metastatic potential. However, CAF targeting is complicated by the lack of knowledge-based strategies aiming to selectively eliminate these cells. There is a growing body of evidence suggesting that a pro-inflammatory microenvironment (e.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are defined as those cells that detach from a cancerous lesion and enter the bloodstream. While generally most CTCs are subjected to high shear stress, anoikis signals, and immune attack in the circulatory system, few are able to survive and reach a distant organ in a viable state, possibly leading to metastasis formation. A large number of studies, both prospective and retrospective, have highlighted the association between CTC abundance and bad prognosis in patients with various cancer types.
View Article and Find Full Text PDFBackground: Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously.
Objective: We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice.
Methods: Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions.