Background: Data derived from wearable activity trackers may provide important clinical insights into disease progression and response to intervention, but only if clinicians can interpret it in a meaningful manner. Longitudinal activity data can be visually presented in multiple ways, but research has failed to explore how clinicians interact with and interpret these visualisations. In response, this study developed a variety of visualisations to understand whether alternative data presentation strategies can provide clinicians with meaningful insights into patient's physical activity patterns.
View Article and Find Full Text PDFBackground: Wearable sensors allow researchers to remotely capture digital health data, including physical activity, which may identify digital biomarkers to differentiate healthy and clinical cohorts. To date, research has focused on high-level data (e.g.
View Article and Find Full Text PDFBackground: Wearable devices are valuable assessment tools for patient outcomes in contexts such as clinical trials. To be successfully deployed, however, participants must be willing to wear them. Another concern is that usability studies are rarely published, often fail to test devices beyond 24 hours, and need to be repeated frequently to ensure that contemporary devices are assessed.
View Article and Find Full Text PDFBackground: Evaluation of pain and stiffness in patients with arthritis is largely based on participants retrospectively reporting their self-perceived pain/stiffness. This is subjective and may not accurately reflect the true impact of therapeutic interventions. We now have access to sensor-based systems to continuously capture objective information regarding movement and activity.
View Article and Find Full Text PDF