Publications by authors named "Frances Wiseman"

Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis.

View Article and Find Full Text PDF

Cathepsin B is a cysteine protease that is implicated in multiple aspects of Alzheimer's disease pathogenesis. The endogenous inhibitor of this enzyme, cystatin B (CSTB) is encoded on chromosome 21. Thus, individuals who have Down syndrome, a genetic condition caused by having an additional copy of chromosome 21, have an extra copy of an endogenous inhibitor of the enzyme.

View Article and Find Full Text PDF
Article Synopsis
  • Individuals with Down syndrome (DS) are at risk for developing early-onset Alzheimer's disease (AD) due to the presence of three copies of chromosome 21, which contains the amyloid precursor protein (APP) gene associated with Aβ protein buildup in the brain.
  • Research using mouse models indicates that genes on chromosome 21, beyond just the APP gene, also play a significant role in influencing Aβ accumulation and may help moderate its effects.
  • Identifying specific regions and candidate genes on chromosome 21 provides insights into the mechanisms underlying the development of AD in individuals with DS, potentially explaining later onset of dementia compared to those with familial AD due to triplication of APP.
View Article and Find Full Text PDF

There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • * Amyloid-β derives from the processing of the amyloid precursor protein (APP), which is linked to the extra copy of chromosome 21 present in individuals with Down syndrome.
  • * Research using primary mouse embryonic fibroblasts from a Down syndrome mouse model shows that endosome characteristics and APP processing remain unchanged, indicating that APP's expression isn't affected by having three copies of the gene.
View Article and Find Full Text PDF

Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer's disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (), play an important role in the pathogenesis of AD in DS (DS-AD).

View Article and Find Full Text PDF
Article Synopsis
  • Research on Down syndrome has surged recently, aiming to better understand how trisomy 21 (T21) affects individuals at the molecular and cellular levels.
  • The Trisomy 21 Research Society (T21RS) is a leading organization uniting researchers and clinicians in this field, hosting events like the Third International Conference in Barcelona in June 2019.
  • The conference attracted 429 attendees and covered significant discoveries related to T21, including cognitive and behavioral challenges, and comorbidities like Alzheimer's disease and leukemia, highlighting advancements in neuroscience, psychology, and therapeutic approaches.
View Article and Find Full Text PDF

People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer's disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, which is cleaved to form amyloid-β that accumulates in the brains of people who have AD.

View Article and Find Full Text PDF

The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds.

View Article and Find Full Text PDF

Individuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early-onset Alzheimer's disease, in which amyloid-β accumulates in the brain. Amyloid-β is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or 'dose' of APP is thought to be the cause of this early-onset Alzheimer's disease. However, other chromosome 21 genes likely modulate disease when in three-copies in people with Down syndrome.

View Article and Find Full Text PDF

Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI.

View Article and Find Full Text PDF

People who have Down syndrome are at significantly elevated risk of developing early onset Alzheimer's disease that causes dementia (AD-DS). Here we review recent progress in modeling the development of AD-DS in mouse models. These studies provide insight into mechanisms underlying Alzheimer's disease and generate new clinical research questions.

View Article and Find Full Text PDF

Altered neural dynamics in the medial prefrontal cortex (mPFC) and hippocampus may contribute to cognitive impairments in the complex chromosomal disorder Down syndrome (DS). Here, we demonstrate non-overlapping behavioral differences associated with distinct abnormalities in hippocampal and mPFC electrophysiology during a canonical spatial working memory task in three partially trisomic mouse models of DS (Dp1Tyb, Dp10Yey, and Dp17Yey) that together cover all regions of homology with human chromosome 21 (Hsa21). Dp1Tyb mice show slower decision-making (unrelated to the gene dose of DYRK1A, which has been implicated in DS cognitive dysfunction) and altered theta dynamics (reduced frequency, increased hippocampal-mPFC coherence, and increased modulation of hippocampal high gamma); Dp10Yey mice show impaired alternation performance and reduced theta modulation of hippocampal low gamma; and Dp17Yey mice are not significantly different from the wild type.

View Article and Find Full Text PDF

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), results in a broad range of phenotypes. A recent study reported that DS cells show genome-wide transcriptional changes in which up- or down-regulated genes are clustered in gene expression dysregulation domains (GEDDs). GEDDs were also reported in fibroblasts derived from a DS mouse model duplicated for some Hsa21-orthologous genes, indicating cross-species conservation of this phenomenon.

View Article and Find Full Text PDF

Pathological mechanisms underlying Down syndrome (DS)/Trisomy 21, including dysregulation of essential signalling processes remain poorly understood. Combining bioinformatics with RNA and protein analysis, we identified downregulation of the Wnt/β-catenin pathway in the hippocampus of adult DS individuals with Alzheimer's disease and the 'Tc1' DS mouse model. Providing a potential underlying molecular pathway, we demonstrate that the chromosome 21 kinase DYRK1A regulates Wnt signalling via a novel bimodal mechanism.

View Article and Find Full Text PDF

Background: Down syndrome (DS), caused by chromosome 21 trisomy, is associated with an ultra-high risk of dementia due to Alzheimer's disease (AD), driven by amyloid precursor protein (APP) gene triplication. Understanding relevant molecular differences between those with DS, those with sporadic AD (sAD) without DS, and controls will aid in understanding AD development in DS. We explored group differences in plasma concentrations of amyloid-β peptides and tau (as their accumulation is a characteristic feature of AD) and cytokines (as the inflammatory response has been implicated in AD development, and immune dysfunction is common in DS).

View Article and Find Full Text PDF

Transgenic animal models are a widely used and powerful tool to investigate human disease and develop therapeutic interventions. Making a transgenic mouse involves random integration of exogenous DNA into the host genome that can have the effect of disrupting endogenous gene expression. The J20 mouse model of Alzheimer's disease (AD) is a transgenic overexpresser of human APP with familial AD mutations and has been extensively utilised in preclinical studies and our aim was to determine the genomic location of the J20 transgene insertion.

View Article and Find Full Text PDF

Down syndrome, caused by trisomy of chromosome 21, is the single most common risk factor for early-onset Alzheimer's disease. Worldwide approximately 6 million people have Down syndrome, and all these individuals will develop the hallmark amyloid plaques and neurofibrillary tangles of Alzheimer's disease by the age of 40 and the vast majority will go on to develop dementia. Triplication of APP, a gene on chromosome 21, is sufficient to cause early-onset Alzheimer's disease in the absence of Down syndrome.

View Article and Find Full Text PDF

Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied-the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation.

View Article and Find Full Text PDF

Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) in humans with an incidence of ∼1:1,000 live births worldwide. It is caused by the presence of an extra copy of all or a segment of the long arm of human chromosome 21 (trisomy 21). People with DS present with a constellation of phenotypic alterations involving most organs and organ systems.

View Article and Find Full Text PDF

We describe a fully automated pipeline for the morphometric phenotyping of mouse brains from μMRI data, and show its application to the Tc1 mouse model of Down syndrome, to identify new morphological phenotypes in the brain of this first transchromosomic animal carrying human chromosome 21. We incorporate an accessible approach for simultaneously scanning multiple ex vivo brains, requiring only a 3D-printed brain holder, and novel image processing steps for their separation and orientation. We employ clinically established multi-atlas techniques-superior to single-atlas methods-together with publicly-available atlas databases for automatic skull-stripping and tissue segmentation, providing high-quality, subject-specific tissue maps.

View Article and Find Full Text PDF

The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects.

View Article and Find Full Text PDF

Down syndrome, which arises in individuals carrying an extra copy of chromosome 21, is associated with a greatly increased risk of early-onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP)--an Alzheimer disease risk factor--although the possession of extra copies of other chromosome 21 genes may also play a part. Further study of the mechanisms underlying the development of Alzheimer disease in people with Down syndrome could provide insights into the mechanisms that cause dementia in the general population.

View Article and Find Full Text PDF