Messenger ribonucleic acid (mRNA) turnover is a major control point in gene expression. In mammals, many mRNAs encoding inflammatory cytokines, oncoproteins, and G-protein-coupled receptors are destabilized by the presence of AU-rich elements (AREs) in their 3'-untranslated regions. Association of ARE-binding proteins (AUBPs) with these mRNAs promotes rapid mRNA degradation.
View Article and Find Full Text PDFAUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes.
View Article and Find Full Text PDFControlled, transient cytokine production by monocytes depends heavily upon rapid mRNA degradation, conferred by 3' untranslated region-localized AU-rich elements (AREs) that associate with RNA-binding proteins. The ARE-binding protein AUF1 forms a complex with cap-dependent translation initiation factors and heat shock proteins to attract the mRNA degradation machinery. We refer to this protein assembly as the AUF1- and signal transduction-regulated complex, ASTRC.
View Article and Find Full Text PDF