The LARGE gene encodes a putative glycosyltransferase that is required for normal glycosylation of dystroglycan, and defects in LARGE can cause abnormal neuronal migration in congenital muscular dystrophy (CMD). Previous studies have focused on radial migration, which is disrupted at least in part due to breaks in the basal lamina. Through analysis of precerebellar nuclei development in the Large(myd) mouse hindbrain, we show that tangential migration of a subgroup of hindbrain neurons may also be disrupted.
View Article and Find Full Text PDFThe Large gene encodes a putative glycosyltransferase that is required for normal glycosylation of dystroglycan, and defects in either Large or dystroglycan cause abnormal neuronal migration. The mechanism for this effect is not fully understood. This study analyzes the Largemyd mouse cerebellum during postnatal cerebellar development.
View Article and Find Full Text PDFCerebellar granule neurons (CGNs) undergo a well-defined, intrinsic differentiation program that is recapitulated in vitro. Thus, homogeneous cultures of CGNs provide an excellent opportunity to define the mechanisms underlying their development. The ability to alter endogenous gene expression in CGNs on a population-wide basis would greatly facilitate the elucidation of these events.
View Article and Find Full Text PDFDifferences in gene expression patterns between adult and postnatal day 7 (P7) mouse cerebellum, at the peak of granule neuron migration, were analyzed by hybridization to the GLYCOv2 glycogene array. This custom designed oligonucleotide array focuses on glycosyl transferases, carbohydrate-binding proteins, proteoglycans and related genes, and 173 genes were identified as being differentially expressed with statistical confidence. Expression levels for 11 of these genes were compared by RT-PCR, and their differential expression between P7 and adult cerebellum confirmed.
View Article and Find Full Text PDFReceptor for advanced glycation end products (RAGE) has been proposed as a signal transduction receptor to promote neurite outgrowth and cell migration, by its interaction with a neurite outgrowth promoting protein, Amphoterin. Amphoterin has been shown to interact with sulfoglucuronyl carbohydrate (SGC). The developmental expression of RAGE, Amphoterin and SGC was studied in pre-natal and post-natal mouse cerebellum to establish their cellular and subcellular localization and function.
View Article and Find Full Text PDFJ Neurosci Res
June 2004
The interaction of alpha-dystroglycan (a-DG) with its extracellular binding partners requires glycans attached to its mucin core domain, and defects in the glycosylation of a-DG are associated with both muscular dystrophy and neuronal migration defects. The involvement of a-DG and one of its ligands, agrin, in cerebellar neuronal migration was investigated. Antibodies directed against glycosylated a-DG inhibited granule neuron migration in cerebellar slice cultures.
View Article and Find Full Text PDFBrain Res Mol Brain Res
April 2003
Dystroglycan (DG) plays a central role in linking the extracellular matrix to cellular cytoskeletal elements, and is required for proper neuromuscular junction organization and neural cell migration in the CNS. DG interactions with laminin and several other extracellular ligands are mediated through carbohydrates located in a densely glycosylated mucin core domain on alpha-DG. A hallmark of a number of congenital muscular dystrophies is abnormal alpha-DG glycosylation and disordered neuronal migration in both the cerebral cortex and cerebellum.
View Article and Find Full Text PDFThe glycoconjugate epitopes 3-fucosyl-N-acetyllactosamine (CD15) and sulfoglucuronylcarbohydrate (SGC) mediate cell adhesion events in several systems, and are regulated both spatially and temporally during cerebellar development. In cotransfection studies using COS-1 cells, competition between glycosyltransferases that utilize a common precursor involved in the final synthetic steps of these epitopes, can modulate epitope expression. For example, cotransfection of rat alpha1,3-fucosyltransferase IV (Fuc-TIV) and either rat glucuronic acid transferase P (GlcAT) or pig alpha1,3-galactosyltransferase (GalT) resulted in the dominance of either SGC or GalalphaGal epitope expression, respectively, with blockage of CD15 epitope expression.
View Article and Find Full Text PDF