Background: In the midst of the COVID-19 pandemic, noninvasive respiratory support (NRS) therapies such as high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) were central to respiratory care. The extent to which these treatments increase the generation and dispersion of infectious respiratory aerosols is not fully understood. The objective of this study was to characterize SARS-CoV-2 aerosol dispersion from subjects with COVID-19 undergoing NRS therapy.
View Article and Find Full Text PDFThe unique properties of mammalian cells make them valuable for a variety of applications in medicine, industry, and diagnostics. However, the utility of such cells is restricted due to the difficulty in storing them non-frozen for an extended time and still maintaining their stability and responsiveness. In order to extend the active life span of a mammalian biosensor cell line at room and refrigerated temperatures, we have over expressed genes that are reported to provide protection from apoptosis, stress, or oxidation.
View Article and Find Full Text PDFWe report the use of genetically engineered cells in a pathogen identification sensor. This sensor uses B lymphocytes that have been engineered to emit light within seconds of exposure to specific bacteria and viruses. We demonstrated rapid screening of relevant samples and identification of a variety of pathogens at very low levels.
View Article and Find Full Text PDF