Publications by authors named "Frances C Knight"

In recent years, tissue-resident memory T cells (T) have attracted significant attention in the field of vaccine development. Distinct from central and effector memory T cells, T cells take up residence in home tissues such as the lung or urogenital tract and are ideally positioned to respond quickly to pathogen encounter. T have been found to play a role in the immune response against many globally important infectious diseases for which new or improved vaccines are needed, including influenza and tuberculosis.

View Article and Find Full Text PDF

Cancer vaccines targeting patient-specific neoantigens have emerged as a promising strategy for improving responses to immune checkpoint blockade. However, neoantigenic peptides are poorly immunogenic and inept at stimulating CD8 T cell responses, motivating a need for new vaccine technologies that enhance their immunogenicity. The stimulator of interferon genes (STING) pathway is an endogenous mechanism by which the innate immune system generates an immunological context for priming and mobilizing neoantigen-specific T cells.

View Article and Find Full Text PDF

Tissue-resident memory T cells (T) patrol nonlymphoid organs and provide superior protection against pathogens that commonly infect mucosal and barrier tissues, such as the lungs, intestine, liver, and skin. Thus, there is a need for vaccine technologies that can induce a robust, protective T response in these tissues. Nanoparticle (NP) vaccines offer important advantages over conventional vaccines; however, there has been minimal investigation into the design of NP-based vaccines for eliciting T responses.

View Article and Find Full Text PDF

Cancer vaccines targeting patient-specific tumor neoantigens have recently emerged as a promising component of the rapidly expanding immunotherapeutic armamentarium. However, neoantigenic peptides typically elicit weak CD8 T cell responses, and so there is a need for universally applicable vaccine delivery strategies to enhance the immunogenicity of these peptides. Ideally, such vaccines could also be rapidly fabricated using chemically synthesized peptide antigens customized to an individual patient.

View Article and Find Full Text PDF

Vaccine design has undergone a shift towards the use of purified protein subunit vaccines, which offer increased safety and greater control over antigen specificity, but at the expense of immunogenicity. Here we report the development of a new polymer-based vaccine delivery platform engineered to enhance immunity through the co-delivery of protein antigens and the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ). Owing to the preferential solubility of IMQ in fatty acids, a series of block copolymer micelles with a fatty acid-mimetic core comprising lauryl methacrylate (LMA) and methacrylic acid (MAA), and a poly(ethylene glycol) methyl ether methacrylate (PEGMA) corona decorated with pyridyl disulfide ethyl methacrylate (PDSM) moieties for antigen conjugation were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization.

View Article and Find Full Text PDF

CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) is a popular material used to prepare nanoparticles for drug delivery. However, PLGA nanoparticles lack desirable attributes including active targeting abilities, resistance to aggregation during lyophilization, and the ability to respond to dynamic environmental stimuli. To overcome these issues, we fabricated a nanoparticle consisting of a PLGA core encapsulated within a shell of poly(N-isopropylacrylamide).

View Article and Find Full Text PDF