Publications by authors named "France Collard"

Plastic pollution threatens many organisms around the world. In particular, the northern fulmar, Fulmarus glacialis, is known to ingest high quantities of plastics. Since data are sparse in the Eurasian Arctic, we investigated plastic burdens in the stomachs of fulmar fledglings from Kongsfjorden, Svalbard.

View Article and Find Full Text PDF

For decades, the northern fulmar (Fulmarus glacialis) has been found to ingest and accumulate high loads of plastic due to its feeding ecology and digestive tract morphology. Plastic ingestion can lead to both physical and toxicological effects as ingested plastics can be a pathway for hazardous chemicals into seabirds' tissues. Many of these contaminants are ubiquitous in the environment and the contribution of plastic ingestion to the uptake of those contaminants in seabirds' tissues is poorly known.

View Article and Find Full Text PDF

There is a need for baseline information about how much plastics are ingested by wildlife and potential negative consequences thereof. We analysed the frequency of occurrence (FO) of plastics >1 mm in the stomachs of five pursuit-diving seabird species collected opportunistically. Atlantic puffins (Fratercula arctica) found emaciated on beaches in SW Norway had the highest FO of plastics (58.

View Article and Find Full Text PDF

An increasing number of organisms from the polar regions are reported contaminated by plastic. Rarely a non-killing sampling method is used. In this study we wanted to assess plastic levels using stomach flushing and evaluate the method suitability for further research and monitoring.

View Article and Find Full Text PDF

Procellariiform seabirds like northern fulmars () are prone to ingest and accumulate floating plastic pieces. In the North Sea region, there is a long tradition to use beached fulmars as biomonitors for marine plastic pollution. Monitoring data revealed consistently lower plastic burdens in adult fulmars compared to younger age classes.

View Article and Find Full Text PDF

Monitoring plastic ingestion by marine wildlife is important for both characterizing the extent of plastic pollution in the environment and understanding its effect on species and ecosystems. Current methods to detect plastic in the digestive system of animals are slow and invasive, such that the number of animals that can be screened is limited. In this article, magnetic resonance imaging (MRI) is investigated as a possible technology to perform rapid, non-invasive detection of plastic ingestion.

View Article and Find Full Text PDF

The northern fulmar Fulmarus glacialis ingests a larger number of (micro)plastics than many other seabirds due to its feeding habits and gut morphology. Since 2002, they are bioindicators of marine plastics in the North Sea region, and data are needed to extend the programme to other parts of their distribution areas, such as the Arctic. In this study, we provide data on ingested plastics by fulmars collected in 1997 in Kongsfjorden, Svalbard.

View Article and Find Full Text PDF

Arctic wildlife is facing multiple stressors, including increasing plastic pollution. Seabirds are intrinsic to marine ecosystems, but most seabird populations are declining. We lack knowledge on plastic ingestion in many arctic seabird species, and there is an urgent need for more information to enable risk assessment and monitoring.

View Article and Find Full Text PDF

Microplastic contamination is an emerging issue in the marine environment including the Arctic. However, the occurrence of microplastics in the Arctic fjords remains less understood. Sample collections were conducted by trawling horizontally in surface water (0-0.

View Article and Find Full Text PDF

Plastic debris is globally found around the world and the remote Arctic is no exception. Arctic true seals are sentinel species of marine pollution and represent the link between marine food webs and Arctic apex predators like polar bears and humans. With regard to true seals, ingested macroplastics have never been reported in an Arctic species.

View Article and Find Full Text PDF
Article Synopsis
  • Research into plastic pollution is growing globally, but there is limited information on microplastic contamination in Arctic regions, particularly Kongsfjorden in Svalbard.
  • Two sampling methods were used to gather 68 sediment samples from five locations in the fjord, revealing a total of 37 anthropogenic particles (APs), including 19 microplastics.
  • The highest pollution levels were found near a sewage outlet at the fjord's mouth, with currents possibly contributing to the accumulation of APs, while deeper sediments revealed the presence of APs that have likely been around for decades.
View Article and Find Full Text PDF

Plastic pollution, especially microplastics (MP) pollution, is a hot topic in both mainstream media and scientific literature. Although rivers are potentially the major transport pathway of this pollution to the sea, plastic contamination in freshwater bodies is comparatively understudied. Microplastic pollution in freshwater fish is of growing interest, and while few studies exist, discrepancies do occur in the sampling, extraction, and identification of MP and in the expression of the results.

View Article and Find Full Text PDF
Article Synopsis
  • Anthropogenic particles (APs) are human-made pollutants that have been extensively studied in marine environments, but research on their effects in freshwater fish is limited, even in contaminated rivers and lakes.
  • A study investigated the ingestion of APs in the freshwater fish Squalius cephalus near Paris, finding that 25% of fish had consumed APs, primarily consisting of fibers and microplastics, with some particles detected in the fish's liver but none in muscle tissue.
  • The findings prompt the need for further research on the effects of fiber ingestion in fish and highlight potential health risks related to microplastics in freshwater ecosystems.
View Article and Find Full Text PDF

Microplastics (MPs) are thought to be ingested by a wide range of marine organisms before being excreted. However, several studies in marine organisms from different taxa have shown that MPs and nanoplastics could be translocated in other organs. In this study, we investigated the presence of MPs in the livers of commercial zooplanktivorous fishes collected in the field.

View Article and Find Full Text PDF

The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a widespread devastating pest that develops on tomato and other economically important solanaceous crops. Current semiochemically-based management strategies still fail to significantly reduce damages and need to be improved. Here we describe under scanning and transmission electron microscopy the structure and distribution of the sensilla that are displayed on adult antennae.

View Article and Find Full Text PDF

Anthropogenic particles (APs), including microplastics, are ingested by a wide variety of marine organisms. Exposure of Clupeiformes (e.g.

View Article and Find Full Text PDF

Dead leaves of the Neptune grass, Posidonia oceanica (L.) Delile, in the Mediterranean coastal zone, are colonized by an abundant "detritivorous" invertebrate community that is heavily predated by fishes. This community was sampled in August 2011, November 2011, and March 2012 at two different sites in the Calvi Bay (Corsica).

View Article and Find Full Text PDF

Microplastic particles (MP) contaminate oceans and affect marine organisms in several ways. Ingestion combined with food intake is generally reported. However, data interpretation often is circumvented by the difficulty to separate MP from bulk samples.

View Article and Find Full Text PDF

The annual variation in neustonic plastic particles and zooplankton was studied in the Bay of Calvi (Corsica) between 30 August 2011 and 7 August 2012. Plastic particles were classified into three size classes, small microplastics (0.2-2mm), large microplastics (2-5mm) and mesoplastics (5-10mm).

View Article and Find Full Text PDF

Neustonic microplastic and zooplankton abundance was determined in the North Western Mediterranean Sea during a summer cruise between July 9th and August 6th 2010, with a break between July 22 th and 25th due to a strong wind event. Ninety percent of the 40 stations contained microplastic particles (size 0.3-5mm) of various compositions: e.

View Article and Find Full Text PDF