Publications by authors named "Franca Pelliccia"

Comparative analysis of recent human genome assemblies highlights profound sequence divergence that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy of relying on human reference genomes to accurately analyze sequencing data derived from experimental cell lines. Here, we generated the complete diploid genome assembly for the human retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, to use as matched reference for multi-omics sequencing data analysis.

View Article and Find Full Text PDF

Replication stress (RS) is a leading cause of genome instability and cancer development. A substantial source of endogenous RS originates from the encounter between the transcription and replication machineries operating on the same DNA template. This occurs predominantly under specific contexts, such as oncogene activation, metabolic stress, or a deficiency in proteins that specifically act to prevent or resolve those transcription-replication conflicts (TRCs).

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a malignant tumor of the central nervous system (CNS). The poor prognosis of GBM due to resistance to therapy has been associated with high chromosomal instability (CIN). Replication stress is a major cause of CIN that manifests as chromosome rearrangements, fragility, and breaks, including those cytologically expressed within specific chromosome regions named common fragile sites (CFSs).

View Article and Find Full Text PDF

Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern.

View Article and Find Full Text PDF

Common fragile sites (CFSs) are particularly vulnerable regions of the genome that become visible as breaks, gaps, or constrictions on metaphase chromosomes when cells are under replicative stress. Impairment in DNA replication, late replication timing, enrichment of A/T nucleotides that tend to form secondary structures, the paucity of active or inducible replication origins, the generation of R-loops, and the collision between replication and transcription machineries on particularly long genes are some of the reported characteristics of CFSs that may contribute to their tissue-specific fragility. Here, we validated the induction of two CFSs previously found in the human fetal lung fibroblast line, Medical Research Council strain (MRC-5), in another cell line derived from the same fetal tissue, Institute for Medical Research-90 cells (IMR-90).

View Article and Find Full Text PDF

We investigated the possible influence of TERC and TERT genetic variation and leukocyte telomere length (LTL) on human lifespan. Four polymorphisms of TERT and three polymorphisms of TERC were examined in a sample of elderly subjects (70⁻100 years). After nine years of follow-up, mortality data were collected, and sub-samples of long-lived/not long-lived were defined.

View Article and Find Full Text PDF

Long-term memory is accompanied by changes in neuronal morphology and connectivity. These alterations are thought to depend upon new gene expression and protein synthesis over a distributed network of brain structures. Although much evidence supports the idea that the creation of stable, persistent memory traces requires synthesis of new proteins, the role of rRNA transcription and nucleolar activity in learning and memory has hardly been explored.

View Article and Find Full Text PDF

Family history of dementia (FH) is a recognized risk factor for developing late-onset Alzheimer's disease (AD). We asked whether having FH increases AD risk and influences disease severity (age at onset and cognitive impairment) in 420 AD patients and 109 controls with (FH+) or without (FH-). The relationships of APOE and other AD risk genes with FH were analyzed as well.

View Article and Find Full Text PDF

KG-1 and its less differentiated subline KG-1a are leukemia cell lines used in research in a number of laboratories. The karyotypes of the two lines were initially identical. In the following years, further analysis revealed that the cell lines had acquired additional karyotypical abnormalities and differed in the presence of certain typical chromosomal rearrangements.

View Article and Find Full Text PDF

Genome amplification is often observed in human tumors. The breakage-fusion-bridge (BFB) cycle is the mechanism that often underlies duplicated regions. Some research has indicated common fragile sites (CFS) as possible sites of chromosome breakages at the origin of BFB cycles.

View Article and Find Full Text PDF

Common fragile sites (CFS) are specific regions of the mammalian chromosomes that are particularly prone to gaps and breaks. They are a cause of genome instability, and the location of many CFS correlates with breakpoints of aberrations recurrent in some cancers. The molecular characterization of some CFS has not clarified the causes of their fragility.

View Article and Find Full Text PDF

Common fragile sites (CFSs) are chromosome regions that exhibit gaps and breaks when the cells are exposed to replication stress and to some DNA-binding compounds. In cancer cells, the CFSs are frequently involved in recurrent chromosome rearrangements. Furthermore, altered expression of associated genes, known or potential oncogenes, and tumor-suppressor genes has often been observed.

View Article and Find Full Text PDF

The molecular basis of the fragility of common fragile sites (CFS) and their role in chromosome instability and in altered expression of associated genes in cancer cells have not yet been clarified. In the present work we analyzed the human CFS FRA1H. FRA1H is the first characterized CFS the expression of which is not induced by aphidicolin but instead by DAPI.

View Article and Find Full Text PDF

In this work, we used antibodies against histone H3 trimethylated at lysine 9 (H3K9m3); against histone H4 acetylated at lysines 5, 8, 12, and 16 (H4ac); and against DNA methylated at 5C cytosine (m5C) to study the presence and distribution of these markers in the genome of the isopod crustacean Asellus aquaticus. The use of these 3 antibodies to immunolabel spermatogonial metaphases yields reproducible patterns on the chromosomes of this crustacean. The X and Y chromosomes present an identical banding pattern with each of the antibodies.

View Article and Find Full Text PDF

Common fragile sites (CFS) are regions of chromosome instability that show gaps or breaks when cells are exposed to particular culture condition. Much evidence suggests that CFSs are causally related to cancer as breakpoints in recurrent chromosome mutations and as sites of viral integration. We investigated the FRA2G CFS (2q31) for biallelic deletions and loss of expression in a panel of 19 tumor-derived cell lines.

View Article and Find Full Text PDF

Four different units containing three variants of the U1 snRNA gene have been identified in the genome of Asellus aquaticus and only one unit has been identified in the genome of Proasellus coxalis. All four identified U1 snRNA genes can be folded according to the proper secondary structure and possess the functionally useful conserved sequences. Moreover, in the 3 flanking regions, all genes present both the 3 box, a conserved sequence required for 3 processing of mature snRNA, and a polyadenylation signal which is unusual for these genes.

View Article and Find Full Text PDF

In this work, five YAC clones have been mapped by fluorescent in situ hybridization (FISH) to human chromosome region 2q31 --> q32.1 and ordered in relation to each other and to the FRA2G common fragile site. YAC clones that span the fragile site have been identified.

View Article and Find Full Text PDF