Publications by authors named "Franca Morazzoni"

The chemical groups present at the surface of graphite have been thought for a long time to be mainly responsible for its catalytic activity in the oxygen reduction reaction. Recently, it was proposed that the surface defects of graphite also significantly contribute to promote this reaction. Although the behaviour of surface defects has been reported, only few comments have been dedicated to their involvement in the mechanism and the possible intermediate species in the oxygen reduction reaction.

View Article and Find Full Text PDF

Organic-inorganic nanobuilding blocks (NBBs) based on silsesquioxanes (SSQs) have potential applications as nanofillers, thermal stabilizers, and rheological modifiers, which can improve thermomechanical properties of polymer hosts. The possibility to tune both siloxane structure and pendant groups can promote compatibilization and peculiar interactions with a plethora of polymers. However, the control on SSQs molecular architecture and functionalities is usually delicate and requires careful synthetic details.

View Article and Find Full Text PDF

TiO2 is frequently combined with carbon materials, such as reduced graphene oxide (RGO), to produce composites with improved properties, for example for photocatalytic applications. It is shown that heating conditions significantly affect the interface and photocatalytic properties of TiO2 @C, and that microwave irradiation can be advantageous for the synthesis of carbon-based materials. Composites of TiO2 with RGO or amorphous carbon were prepared from reaction of titanium isopropoxide with benzyl alcohol.

View Article and Find Full Text PDF

Silica-natural rubber nanocomposites were obtained through a novel non-aqueous in situ sol-gel synthesis, producing the amount of water necessary to induce the hydrolysis and condensation of a tetraethoxysilane precursor by esterification of formic acid with ethanol. The method allows the synthesis of low hydrophilic silica nanoparticles with ethoxy groups linked to the silica surface which enable the filler to be more dispersible in the hydrophobic rubber. Thus, high loaded silica composites (75 phr, parts per hundred rubber) were obtained without using any coupling agent.

View Article and Find Full Text PDF

The present study reports on the synthesis and the electrochemical behavior of Na(0.71)CoO(2), a promising candidate as cathode for Na-based batteries. The material was obtained in two different morphologies by a double-step route, which is cheap and easy to scale up: the hydrothermal synthesis to produce Co(3)O(4) with tailored and nanometric morphology, followed by the solid-state reaction with NaOH, or alternatively with Na(2)CO(3), to promote Na intercalation.

View Article and Find Full Text PDF

The promising properties of anatase TiO(2) nanocrystals exposing specific surfaces have been investigated in depth both theoretically and experimentally. However, a clear assessment of the role of the crystal faces in photocatalytic processes is still under debate. In order to clarify this issue, we have comprehensively explored the properties of the photogenerated defects and in particular their dependence on the exposed crystal faces in shape-controlled anatase.

View Article and Find Full Text PDF

Macroporous WO(3) films with inverted opal structure were synthesized by one-step procedure, which involves the self-assembly of the spherical templating agents and the simultaneous sol-gel condensation of the semiconductor alkoxide precursor. Transition metal doping, aimed to enhance the WO(3) electrical response, was carried out by including Cr(III) and Pt(IV) centers in the oxide matrix. It turned out that Cr remains as homogeneously dispersed Cr(III) centers inside the WO(3) host, while Pt undergoes reduction and aggregation to form nanoclusters located at the oxide surface.

View Article and Find Full Text PDF

The possibility of controlling the photocatalytic activity of TiO2 nanoparticles by tailoring their crystalline structure and morphology is a current topic of great interest. In this study, a broad variety of well-faceted particles with different phase compositions, sizes, and shapes have been obtained from concentrated TiOCl2 solutions by systematically changing temperature, pH, and duration of the hydrothermal treatment. The guide to select the suitable experimental conditions was provided by thermodynamic modeling based on available thermochemical data.

View Article and Find Full Text PDF

The mechanism of NO interaction with nanosized Ru(Pd,Pt)-doped SnO(2) was studied by electron paramagnetic resonance, Mössbauer, and electric resistance measurements. Three steps were proposed for the reaction between the semiconductor oxide and the gaseous component: (i) the formation of bielectronic oxygen vacancies (V(o)) in SnO(2); (ii) their single-ionization (V(o)(*)) with injection of electrons into the SnO(2) conduction band; (iii) the subsequent transfer of electrons from V(o)(*) to [Ru(Pd,Pt)](4+). The last process induces the formation of further oxygen vacancies which reduce the transition metal centers to lower oxidation states; the redox processes is enhanced and the electrical resistance in transition metal-doped SnO(2) is stronger modified with respect to the undoped material.

View Article and Find Full Text PDF

Ce-doped borosilicate (BSG), phosphosilicate (PSG), and borophosphosilicate (BPSG) glasses (B:P:Si molar ratios 8:0:92, 0:8:92, and 8:8:84; Ce:Si molar ratio 1 x 10(-)(4) to 1 x 10(-)(2)) were prepared by the sol-gel method. High-resolution transmission electron microscopy (HRTEM), (31)P, (29)Si, and (11)B magic angle spinning nuclear magnetic resonance (MAS NMR), electron paramagnetic resonance (EPR), and UV-vis absorption investigations demonstrated that, in PSG and BPSG, Ce(3+) ions interact with phosphoryl, [O=PO(3/2)], metaphosphate, [O=PO(2/ 2)O](-), and pyrophosphate, [O=PO(1/2)O(2)](2)(-), groups, linked to a silica network. This inhibits both CeO(2) segregation and oxidation of isolated Ce(3+) ions to Ce(4+), up to Ce:Si = 5 x 10(-)(3).

View Article and Find Full Text PDF

The radicalization of unbleached lignocellulosic fibers obtained from thermomechanical (TMP) and chemothermomechanical (CTMP) pulps was performed in heterogeneous phase by reaction with dioxygen in the presence of N,N'-ethylenebis(salicylideneiminato)cobalt(II), [Co(salen)], as catalyst. Phenoxy cobalt radicals immobilized in fibers were observed by electron paramagnetic resonance (EPR) spectroscopy; their amount depends on the fiber swelling induced by reaction medium. The absolute concentration of such radicals in fibers, about 10(16) spin/g, reaches values 10 times higher than that of phenoxy radicals formed in similar oxidative reactions catalyzed by laccase.

View Article and Find Full Text PDF