The National Institutes of Health Chronic Graft-versus-Host Disease (cGVHD) Consensus Project Ancillary and Supportive Care Guidelines recommend annual assessment of bone mineral density (BMD) to monitor bone health. The study of osteoporosis in patients with cGVHD has been limited to small numbers of patients, and the guidelines are based on experience with other chronic diseases and expert opinion. We hypothesized that the prevalence of osteoporosis is high in a cohort of 258 patients with moderate to severe cGVHD because of prolonged exposure to risk factors for osteoporosis after allogeneic hematopoietic stem cell transplantation.
View Article and Find Full Text PDFSclerotic skin manifestations of chronic graft-versus-host disease (ScGVHD) lead to significant morbidity, including functional disability from joint range of motion (ROM) restriction. No superior second-line therapy has been established for steroid-refractory disease. Imatinib mesylate is a multikinase inhibitor of several signaling pathways implicated in skin fibrosis with in vitro antifibrotic activity.
View Article and Find Full Text PDFBackground: The mechanisms responsible for the variable manifestations of chronic cutaneous graft-vs-host disease (cGVHD) are poorly understood. Localization of sclerotic-type chronic graft-vs-host disease to sites of skin injury (isomorphic and isotopic responses), a recognized phenomenon in morphea, suggests a potential common pathway between cGVHD and other sclerotic skin conditions.
Observations: Four cases of sclerotic-type cGVHD developed at the site of disparate skin injuries (ionizing radiotherapy, repeated needle sticks, central catheter site, and varicella-zoster virus infection).
Chronic GVHD is one of the most severe complications of allogeneic HSCT. The sclerotic skin manifestations of cGVHD (ScGVHD) result from inflammation and fibrosis of the dermis, subcutaneous tissue, or fascia, leading to significant functional disability. Risk factors and clinical markers associated with ScGVHD remain largely unexamined.
View Article and Find Full Text PDFTelomere length analysis has been greatly simplified by the quantitative flow cytometry technique FISH-flow. In this method, a fluorescein-labeled synthetic oligonucleotide complementary to the telomere terminal repeat sequence is hybridized to the telomere sequence and the resulting fluorescence measured by flow cytometry. This technique has supplanted the traditional laborious Southern blot telomere length measurement techniques in many laboratories, and allows single cell analysis of telomere length in high-throughput sample formats.
View Article and Find Full Text PDF