Publications by authors named "Frada Berenshteyn"

Article Synopsis
  • Spinal muscular atrophy (SMA) is a severe genetic disorder caused by the loss of the SMN1 gene, leading to high pediatric mortality rates.
  • A small-molecule enhancer that improves SMN2 splicing was discovered, increasing the production of a stable full-length SMN protein and improving survival in a mouse model of severe SMA.
  • The mechanism works by stabilizing a specific RNA structure in the SMN2 pre-mRNA, which boosts the binding of RNA processing components in a targeted way, suggesting potential for similar treatments in other splicing-related diseases.
View Article and Find Full Text PDF

Huntington's disease is caused by expanded CAG repeats in HTT, conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits.

View Article and Find Full Text PDF

Unraveling the therapeutic potential of human embryonic stem cells (hESC) requires tools to modify their genome. We have engineered the PiggyBac transposable element to create an efficient system for gene delivery in hESCs. This redesigned system, named "ePiggyBac," can deliver up to 18 Kb inserts, and transgene expression is observed in almost 90% of hES cells.

View Article and Find Full Text PDF

The genetic pathways that partition the developing nervous system into functional systems are largely unknown. The engrailed (En) homeobox transcription factors are candidate regulators of this process in the dorsal midbrain (tectum) and anterior hindbrain (cerebellum). En1 mutants lack most of the tectum and cerebellum and die at birth, whereas En2 mutants are viable with a smaller cerebellum and foliation defects.

View Article and Find Full Text PDF

We used the cerebellum as a model to study the morphogenetic and cellular processes underlying the formation of elaborate brain structures from a simple neural tube, using an inducible genetic fate mapping approach in mouse. We demonstrate how a 90 degrees rotation between embryonic days 9 and 12 converts the rostral-caudal axis of dorsal rhombomere 1 into the medial-lateral axis of the wing-like bilateral cerebellar primordium. With the appropriate use of promoters, we marked specific medial-lateral domains of the cerebellar primordium and derived a positional fate map of the murine cerebellum.

View Article and Find Full Text PDF