Publications by authors named "Fouz B"

DIVULSUPERBAC (DSB) is an outreach project involving a Service-Learning component aimed at the educational community. Launched in 2019, it has involved Biology degree students in a Microbiology-focused initiative within the Valencian Community (Spain) for four academic years. The DSB project includes various outreach activities designed to raise awareness of the threat posed by superbugs among preuniversity students.

View Article and Find Full Text PDF

(Vv) is a bacterial pathogen native to warm and brackish water ecosystems that can cause fatal septicemia (Vv-vibriosis) in humans and various farmed fish species. From a One Health perspective, controlling Vv-vibriosis outbreaks on farms is essential not only for animal but also for human health, as it reduces the risk of Vv transmission to humans. Electrolyzed water (EW) is a sustainable control method, exhibiting transient disinfectant properties due to the formation of hypochlorous acid (HOCl).

View Article and Find Full Text PDF

Teleost fish lack organized structures in mucosal tissues such as those of mammals, but instead contain dispersed B and T cells with the capacity to respond to external stimuli. Nonetheless, there is still a great lack of knowledge regarding how B cells differentiate to plasmablasts/plasma cells in these mucosal surfaces. To contribute to a further understanding of the mechanisms through which fish mucosal B cells are activated, in the current study, we have studied the B cell responses in the skin and gills of rainbow trout (Oncorhynchus mykiss) exposed to Yersinia ruckeri.

View Article and Find Full Text PDF

Acute hepatopancreatic necrosis (AHPND) is an emerging severe disease caused by strains of () in whiteleg shrimp (). Mitigating its negative impact, and at the same time minimizing antibiotics treatments, is the major challenge in shrimp aquaculture. A sustainable strategy could be to include immunostimulants in diet.

View Article and Find Full Text PDF

Vibrio vulnificus is a zoonotic pathogen that can cause death by septicaemia in farmed fish (mainly eels) and humans. The zoonotic strains that have been isolated from diseased eels and humans after eel handling belong to clade E (or serovar E (SerE)), a clonal complex within the pathovar (pv.) piscis.

View Article and Find Full Text PDF

Vibrio vulnificus is a zoonotic pathogen linked to aquaculture that is spreading due to climate change. The pathogen can be transmitted to humans and animals by ingestion of raw shellfish or seafood feed, respectively. The aim of this work was to design and test a new procedure to detect V.

View Article and Find Full Text PDF

Vibrio harveyi is recognized as one of the major causes of vibriosis, a disease that threatens the long-term sustainability of aquaculture. Current research shows that the Mediterranean strains of V. harveyi are serologically heterogeneous, though research comparing the traits of different strains is scarce.

View Article and Find Full Text PDF

is a pathogen of public health concern that causes either primary septicemia after ingestion of raw shellfish or secondary septicemia after wound exposure to seawater. In consequence, shellfish and seawater are considered its main reservoirs. However, there is one aspect of its biology that is systematically overlooked: its association with fish in its natural environment.

View Article and Find Full Text PDF

Potentially zoonotic Vibrio vulnificus strains were isolated from vibriosis outbreaks occurring on eastern Mediterranean tilapia farms between 2016 and 2019. In this work, the draft genome sequences of three representative isolates are presented.

View Article and Find Full Text PDF

Antibiotic misuse is a public health problem due to the appearance of resistant strains in almost all human pathogens, making infectious diseases more difficult to treat. The search for solutions requires the development of new antimicrobials as well as novel strategies, including increasing social awareness of the problem. The Small World Initiative (SWI) and the Tiny Earth (TE) network are citizen science programs pursuing the discovery of new antibiotics from soil samples and the promotion of scientific culture.

View Article and Find Full Text PDF

is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively.

View Article and Find Full Text PDF

(Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources.

View Article and Find Full Text PDF

Background: The constant increase of aquaculture production and wealthy seafood consumption has forced the industry to explore alternative and more sustainable raw aquafeed materials, and plant ingredients have been used to replace marine feedstuffs in many farmed fish. The objective of the present study was to assess whether plant-based diets can induce changes in the intestinal mucus proteome, gut autochthonous microbiota and disease susceptibility of fish, and whether these changes could be reversed by the addition of sodium butyrate to the diets. Three different trials were performed using the teleostean gilthead sea bream (Sparus aurata) as model.

View Article and Find Full Text PDF

biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTX (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA1), which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsis by performing , and assays.

View Article and Find Full Text PDF

Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets.

View Article and Find Full Text PDF

Vibrio vulnificus biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide.

View Article and Find Full Text PDF

The routine use of chemotherapy to control bacterial diseases in aquatic populations has resulted in the development and spread of antibiotic resistance. The inclusion of immunostimulants in fish diets (functional diets) is one of the main strategies to solve this threat. This study aimed to analyse the intestinal microbiota of cultured European sea bass (Dicentrarchus labrax) fed two functional diets applying pyrosequencing of PCR-amplified 16S rRNA gene.

View Article and Find Full Text PDF

Potential immunostimulatory effects of orally administered β-glucan were investigated in combination with immersion vaccination against enteric redmouth disease caused by Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). A linear, unbranched and pure (purity ≥98%) β-1,3-glucan (syn. paramylon) from the alga Euglena gracilis was applied at an inclusion level of 1% β-glucan in feed administered at a rate of 1% biomass day(-1) for 84 consecutive days.

View Article and Find Full Text PDF

Infections with betanodavirus affect a wide range of wild and farmed fish species throughout the world, mostly from the marine environment. The aim of this work was to develop and validate real-time RT-PCR assays for sensitive and specific detection of nodavirus in diseased or carrier fish. The new detection assay was used to study the transmission and development of nodavirus infection in juvenile sea bass, Dicentrarchus labrax (L.

View Article and Find Full Text PDF

Vibrio vulnificus biotype 2 is subdivided into two main serovars, serovar E, able to infect fish and humans, and serovar A, only virulent for fish. Serovar E emerged in 1976 as the causative agent of a haemorrhagic septicaemia (warm-water vibriosis) affecting eels cultured in brackish water. Serovar A emerged in 2000 in freshwater-cultured eels vaccinated against serovar E, causing warm-water vibriosis with fish showing a haemorrhagic intestine as the main differential sign.

View Article and Find Full Text PDF

This work demonstrates that Vibrio vulnificus biotype 2, serovar E, an eel pathogen able to infect humans, can become resistant to quinolone by specific mutations in gyrA (substitution of isoleucine for serine at position 83) and to some fluoroquinolones by additional mutations in parC (substitution of lysine for serine at position 85). Thus, to avoid the selection of resistant strains that are potentially pathogenic for humans, antibiotics other than quinolones must be used to treat vibriosis on farms.

View Article and Find Full Text PDF