Publications by authors named "Fout G"

Somatic coliphages are alternative indicators of fecal pollution and attractive surrogates for viral pathogens. Here, we report the draft genome sequences of three replicate plaques from a novel bacteriophage isolated from raw wastewater. These genomes were similar to felix01virus phage and are predicted to contain up to 148 protein-coding genes.

View Article and Find Full Text PDF

Quantifying sporadic waterborne infections in community settings can be challenging. Salivary antibody immunoassays are a promising non-invasive tool that can be used in prospective studies of common infections, especially those involving children. This study was conducted in a Massachusetts city, which uses a microbiologically contaminated river as its water source, during summer-early winter periods before and after construction of a new drinking water treatment plant.

View Article and Find Full Text PDF

Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR).

View Article and Find Full Text PDF

Enteroviruses are RNA viruses that are responsible for both mild gastroenteritis and mild respiratory illnesses as well as debilitating diseases such as meningitis and myocarditis. The disease burden of enteroviruses in the United States is difficult to assess because most infections are not recorded. Since infected individuals shed enterovirus in feces and urine, surveillance of municipal wastewater can reveal the diversity of enteroviruses circulating in human populations.

View Article and Find Full Text PDF

Groundwater quality is often evaluated using microbial indicators. This study examines data from 12 international groundwater studies (conducted 1992-2013) of 718 public drinking-water systems located in a range of hydrogeological settings. Focus was on testing the value of indicator organisms for identifying virus-contaminated wells.

View Article and Find Full Text PDF

Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive.

View Article and Find Full Text PDF

Aim: To investigate the dose-length product (DLP) during intracranial computed tomography angiography (CTA) using a patient-specific contrast formula.

Materials And Methods: Intracranial CTA was performed on 120 patients using 64-channel CT. Patients were subjected in equal numbers to one of two acquisitions/contrast medium protocols.

View Article and Find Full Text PDF

A standardized method is required when national studies on virus occurrence in environmental and drinking waters utilize multiple analytical laboratories. The U.S Environmental Protection Agency's (USEPA) Method 1615 was developed with the goal of providing such a standard for measuring Enterovirus and Norovirus in these waters.

View Article and Find Full Text PDF

EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. This method was developed with the goal of having a standardized method for use in multiple analytical laboratories during monitoring period 3 of the Unregulated Contaminant Monitoring Rule. Herein we present the protocol for extraction of viral ribonucleic acid (RNA) from water sample concentrates and for quantitatively measuring enterovirus and norovirus concentrations using reverse transcription-quantitative PCR (RT-qPCR).

View Article and Find Full Text PDF

Practical difficulties of the traditional adenovirus infectivity assay such as intensive labor requirements and longer turnaround period limit the direct use of adenovirus as a testing microorganism for systematic, comprehensive disinfection studies. In this study, we attempted to validate the applicability of integrated cell culture quantitative PCR (ICC-qPCR) as an alternative to the traditional cell culture method with human adenovirus type 2 (HAdV2) in a low-pressure UV disinfection study and to further optimize the procedures of ICC-qPCR for 24-well plate format. The relatively high stability of the hexon gene of HAdV2 was observed after exposure to UV radiation, resulting in a maximum gene copy reduction of 0.

View Article and Find Full Text PDF

EPA Method 1615 was developed with a goal of providing a standard method for measuring enteroviruses and noroviruses in environmental and drinking waters. The standardized sampling component of the method concentrates viruses that may be present in water by passage of a minimum specified volume of water through an electropositive cartridge filter. The minimum specified volumes for surface and finished/ground water are 300 L and 1,500 L, respectively.

View Article and Find Full Text PDF

Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the public health significance of positive findings are limited. In this study, PMA RT-PCR and RT-qPCR assays were evaluated for selective detection of infectious poliovirus, murine norovirus (MNV-1), and Norwalk virus.

View Article and Find Full Text PDF

The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR).

View Article and Find Full Text PDF

The objective of this study was to compare three nucleic acid extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approaches for norovirus (NoV) detection in drinking water with respect to performance, costs, and analysis time. The approaches evaluated were: (A) an approach that utilizes the QIAamp DNA Blood Mini Kit and multiplex primers and probes for detection; (B) a procedure which includes the NucliSENS Magnetic Extraction Kit and other components of a proposed European Union standard method for NoV detection in foods; and (C) a commercialized assay which uses NucliSENS extraction and Cepheid SmartCycler® technologies. Each approach was evaluated by most probable number (MPN) analysis for detection of GI.

View Article and Find Full Text PDF

Using in situ subtropical aquatic mesocosms, fecal source (cattle manure versus sewage) was shown to be the most important contributor to differential loss in viability of fecal indicator bacteria (FIB), specifically enterococci in freshwater and Escherichia coli in marine habitats. In this study, sunlight exposure and indigenous aquatic microbiota were also important contributors, whose effects on FIB also differed between water types.

View Article and Find Full Text PDF

The U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996.

View Article and Find Full Text PDF

The effective recovery of adenovirus from water is a critical first step in developing a virus occurrence method able to provide accurate data for risk assessments and other applications. During virus concentration, electropositive filters are typically eluted with beef extract, undergo secondary concentration using either an organic flocculation or polyethylene glycol (PEG) precipitation technique and are ultimately resuspended in sodium phosphate buffer. In this study, an alternative secondary concentration procedure using celite was optimized by identifying the optimal celite and elution buffer to use.

View Article and Find Full Text PDF

Saliva has an important advantage over serum as a medium for antibody detection due to non-invasive sampling, which is critical for community-based epidemiological surveys. The development of a Luminex multiplex immunoassay for measurement of salivary IgG and IgA responses to potentially waterborne pathogens, Helicobacter pylori, Toxoplasma gondii, Cryptosporidium, and four noroviruses, involved selection of antigens and optimization of antigen coupling to Luminex microspheres. Coupling confirmation was conducted using antigen specific antibody or control sera at serial dilutions.

View Article and Find Full Text PDF

Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since only infectious viruses are a public health concern, methods that not only are rapid but also provide information on the infectivity of viruses are of interest.

View Article and Find Full Text PDF

A survey of enteric viruses and indicator bacteria was carried out in eight community water supply sources (four wells and four springs) in East Tennessee. Seven sites derived their water from carbonate aquifers and one from fractured sandstone. Four of the sites were deemed "low-risk" based on prior monitoring of fecal indicators and factors such as presence of thick layers of overlying sediments.

View Article and Find Full Text PDF

The U.S. Environmental Protection Agency's information collection rule requires the use of 1MDS electropositive filters for concentrating enteric viruses from water, but unfortunately, these filters are not cost-effective for routine viral monitoring.

View Article and Find Full Text PDF

Noroviruses are the leading cause of nonbacterial gastroenteritis outbreaks in the United States, some of which are caused by the ingestion of contaminated water. Detection and genotypic characterization of noroviruses is commonly performed by reverse transcription-polymerase chain reaction (RT-PCR) followed by sequencing. However, sequencing of products amplified from environmental water samples is often hindered by the co-amplification of non-specific cDNA.

View Article and Find Full Text PDF
Article Synopsis
  • A multiplex RT-PCR method was used to assess virus presence in stream water across five sites with different environmental conditions and land uses.
  • * The study compared the effectiveness of this molecular technique to traditional methods like cell culture and E. coli membrane filtration, and incorporated various quality controls to ensure accurate results.
  • * Results showed the presence of several viruses, including enteroviruses and hepatitis A, across all sites, and indicated that fecal contamination was a concern even in water that met EPA guidelines for recreational use.
View Article and Find Full Text PDF

Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides a means to rapidly detect low levels of these viruses, but it is sensitive to inhibitors that are present in water samples.

View Article and Find Full Text PDF

Astrovirus is a common cause of gastroenteritis in humans that has been determined to be responsible for outbreaks of illness in several countries. Since astrovirus can be waterborne, it is important to be able to identify this virus in environmental water. We have developed and optimized a reverse transcription - polymerase chain reaction (RT-PCR) method that was able to amplify all eight astrovirus serotypes in a single reaction.

View Article and Find Full Text PDF