Tumor development necessitates immune escape through different mechanisms. To counteract these effects, the development of therapies targeting Immune Checkpoints (ICP) has generated interest as they have produced lasting objective responses in patients with advanced metastatic tumors. However, many tumors do not respond to inhibitors of ICP, necessitating to further study the underlying mechanisms of exhaustion.
View Article and Find Full Text PDFCD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored.
View Article and Find Full Text PDFTriple Negative Breast Cancers (TNBC) are the most aggressive breast cancers and lead to poor prognoses. This is due to a high resistance to therapies, mainly because of the presence of Cancer Stem Cells (CSCs). Plasticity, a feature of CSCs, is acquired through the Epithelial to Mesenchymal Transition (EMT), a process that has been recently shown to be regulated by a key molecule, CD146.
View Article and Find Full Text PDFObjective: Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction, and vascular damage, in which the expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. Since CD146 also exists as a circulating soluble form (sCD146) that acts as a growth factor in numerous angiogenic- and inflammation-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and to characterize the regulation and functions of the different variants identified in SSc.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
May 2021
Exposure to chronic skeletal muscle disuse and unloading that astronauts experience results in muscle deconditioning and bone remodeling. Tendons involved in the transmission of force from muscles to skeleton are also affected. Understanding the changes that occur in muscle, tendon, and bone is an essential step toward limiting or preventing the deleterious effects of chronic reduction in mechanical load.
View Article and Find Full Text PDFThe fundamental role of cell adhesion molecules in mediating various biological processes as angiogenesis has been well-documented. CD146, an adhesion molecule of the immunoglobulin superfamily, and its soluble form, constitute major players in both physiological and pathological angiogenesis. A growing body of evidence shows soluble CD146 to be significantly elevated in the serum or interstitial fluid of patients with pathologies related to deregulated angiogenesis, as autoimmune diseases, obstetric and ocular pathologies, and cancers.
View Article and Find Full Text PDFCD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis.
View Article and Find Full Text PDFInitially discovered in human melanoma, CD146/MCAM is expressed on many tumors and is correlated with cancer progression and metastasis. However, targeting CD146 remains challenging since it is also expressed on other cell types, as vessel cells, where it displays important physiological functions. We previously demonstrated that CD146 is shed as a soluble form (sCD146) that vectorizes the effects of membrane CD146 on tumor angiogenesis, growth and survival.
View Article and Find Full Text PDFAims: The progression of atherosclerosis is based on the continued recruitment of leukocytes in the vessel wall. The previously described role of CD146 in leukocyte infiltration suggests an involvement for this adhesion molecule in the inflammatory response. In this study, we investigated the role of CD146 in leukocyte recruitment by using an experimental model of atherogenesis.
View Article and Find Full Text PDFCD146 is an adhesion molecule present on many tumors (melanoma, kidney, pancreas, breast, ...
View Article and Find Full Text PDFCD146 (MUC-18, MCAM) expression on cancer cells correlates with cancer progression and a bad prognosis in several tumors, including melanoma and pancreatic tumors. Deciphering the mechanism mediating the CD146 role in cancer is essential for generating new therapeutic strategies. We found that CD146 expression in cancer cells is associated with a secretion of soluble CD146 (sCD146) that constitutes an active player in tumor development.
View Article and Find Full Text PDFAims: Endothelial colony-forming cells (ECFC) constitute an endothelial progenitor fraction with a promising interest for the treatment of ischaemic cardiovascular diseases. As soluble CD146 (sCD146) is a new factor promoting angiogenesis, we examined whether sCD146 priming could improve the therapeutic potential of ECFC and defined the involved mechanism.
Methods And Results: We investigated the effects of sCD146 priming on regenerative properties of ECFC in vivo.
The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC).
View Article and Find Full Text PDFSmooth muscle cells (SMCs) participate to the regulation of peripheral arterial resistance and blood pressure. To assume their function, SMCs differentiate throughout the normal vascular development from a synthetic phenotype towards a fully differentiated contractile phenotype by acquiring a repertoire of proteins involved in contraction. In human fetal muscular arteries and umbilical arteries (UAs), no data are available regarding the differentiation of SMCs during the last trimester of gestation.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) seem to be a promising option to treat patients with ischemic diseases. Here, we investigated the effects of late outgrowth EPCs, or endothelial colony-forming cells (ECFCs), a recently defined homogeneous subtype of EPCs, in a rat model of transient middle cerebral artery occlusion (MCAO). Either vehicle or 4.
View Article and Find Full Text PDFRationale: CD146, a transmembrane immunoglobulin mainly expressed at the intercellular junction of endothelial cells, is involved in cell-cell cohesion, paracellular permeability, monocyte transmigration and angiogenesis. CD146 exists as 2 isoforms, short (sh) and long (lg), but which isoform is involved remains undefined.
Objective: The recently described role of CD146 in angiogenesis prompted us to investigate which isoform was involved in this process in human late endothelial progenitors (EPCs), with the objective of increasing their proangiogenic potential.
CD146, an endothelial molecule involved in permeability and monocyte transmigration, has recently been reported to promote vessel growth. As CD146 is also detectable as a soluble form (sCD146), we hypothesized that sCD146 could stimulate angiogenesis. Experiments of Matrigel plugs in vivo showed that sCD146 displayed chemotactic activity on endogenous endothelial cells, and exogenously injected late endothelial progenitor cells (EPCs).
View Article and Find Full Text PDFPathological levels of homocysteine induce a dramatic degradation of arterial elastic structures. This severe metalloproteinase-dependant elastolysis affects elastic structures all over the media suggesting that smooth muscle cells (SMC) may participate to this process induced by homocysteine. Therefore, we investigated the effect of physiological (10 microM) and pathological (50, 100, and 500 microM) concentrations of homocysteine on the metalloproteinase-dependant proteolytic potential of human arterial SMC in culture.
View Article and Find Full Text PDFThe thermal and dielectric properties of the elastin network were investigated in arteries cultured with physiological and pathological concentrations of homocysteine, an aminoacid responsible of histological impairments in human arteries. The physical structure of this amorphous protein was investigated by differential scanning calorimetry (DSC). To explore the molecular dynamics of the elastin network in the nanometer range, we used thermally stimulated currents (TSC), a dielectric technique running at low frequency, and measuring the dipolar reorientations in proteins subjected to a static electrical field.
View Article and Find Full Text PDFBisphosphonates are extensively used in the treatment of patients with metastasis-induced osteolysis. The major drawback in the efficacy of all bisphosphonates lies in their high hydrophilic nature, which results in poor membrane permeability and low availability for soft tissues. A reasonable approach to overcome these problems consists in masking one or more ionizable groups of bisphosphonates, notably by esterification of the hydroxyl functions.
View Article and Find Full Text PDFFucoidans are sulfated fucosylated polymers from brown algae cell wall that exhibit some heparin/heparan sulfate properties. We previously demonstrated that these polysaccharides were able in vitro to stimulate dermal fibroblast proliferation and extracellular matrix deposition. Here, we investigated the action of a 16kDa fucoidan fraction on parameters involved in connective tissue breakdown.
View Article and Find Full Text PDFSupravalvular aortic stenosis (SVAS) and Williams Beuren syndrome (WBS) can be considered as inherited diseases affecting the whole arterial tree and causing narrowing of the vessels. It has been reported that abnormal deposition of elastin in arterial walls of patients with SVAS and WBS leads to increased proliferation of arterial smooth muscle cells (SMC), which result in the formation of hyperplastic intimal lesions. In this work, we conducted morphological and morphometrical analysis with stenotic aortas from patients suffering from SVAS and WBS and from healthy control subjects and demonstrated that the amount of elastic fibers and the loss of integrity of vascular elastic fibers in the aortas reflect similar changes in the skin of patients with SVAS or WBS, as reported in our previous work conducted on skin in these pathological states.
View Article and Find Full Text PDF