Background: This paper aims to indicate numerically the accurate porosity used for dental implants, following the emphasis on the preference for titanium foam on pure titanium implants. A 3D-optimized numerical model is created to demonstrate the detailed differences between models.
Method: A 3D finite element model was generated using Abaqus for titanium and titanium foam implants with different porosities (50,60,62.
Introduction: This study aimed to clarify the effect of power arm length combined with additional torque incorporated into the archwire on the controlled movement of the anterior teeth using the finite element method.
Methods: An adult patient requiring medium anchorage after extraction of the maxillary first premolars was selected for this study. The power arms were placed between the lateral incisor and the canine at 3 levels: 3 mm, 6 mm, and 9 mm.
Objective: To compare the three-dimensional (3D) effects of canine traction on the maxillary teeth when using two different traction methods, the continuous and the segmented arch wire techniques; then to test whether adding a transpalatal arch (TPA) would affect their response to traction.
Design: Finite element analysis.
Methods: A cone-beam computed tomography (CBCT) scan of a patient with bilateral palatally impacted canines was chosen, from which a 3D model was derived and imported into ABAQUS.
Introduction: The extraction of maxillary first premolars is usually the treatment of choice to resolve crowding, alveolar protrusion, or Class II malocclusion. The demand for a lingual orthodontic treatment is increasing because of its esthetic value; therefore, understanding lingual biomechanics is essential to every clinician. This study compared the 3-dimensional (3D) effects of sliding mechanics in labial and lingual orthodontics using the finite element method.
View Article and Find Full Text PDFSince the membrane-related processes represent an integral part of the biological activities of drugs, their effect on the membrane dynamics is actually considered. In this study, we investigated the effect of pentacyclic triterpenes (TTPs), oleanolic acid (OA) and erythrodiol (ER), on the fluidity and permeability of liposomes membranes differing by their cholesterol content. All liposomes were prepared by reverse phase evaporation technique (REV).
View Article and Find Full Text PDFGiven that literature data may give inconsistent results on the effect of a drug on lipid membrane properties, this work aims to investigate the impact of the liposome composition and experimental protocol design on glucocorticoids (GRs: cortisol, cortisone, fludrocortisone acetate, methylprednisolone, prednisolone and prednisone)-modulating membrane fluidity and permeability. GRs-loaded liposomes consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) were prepared by reverse phase evaporation technique (REV) at DPPC:CHOL:GR molar ratios of 100:100:2.5, and 100:100:10.
View Article and Find Full Text PDFThe effect of cholesterol (CHOL) content on the permeability and fluidity of dipalmitoylphosphatidylcholine (DPPC) liposome membrane was investigated. Liposomes encapsulating sulforhodamine B (SRB), a fluorescent dye, were prepared by reverse phase evaporation technique (REV) at various DPPC:CHOL molar ratios (from 100:0 to 100:100). The release kinetics of SRB was studied during 48 h in buffer (pH 7.
View Article and Find Full Text PDF