Publications by authors named "Fouad Ghamouss"

The formulation of safe electrolytes for supercapacitors based on phosphazene used as a flame-retardant (FR) is carried out. 3 molecules are used: hexafluorocyclotriphosphazene (FR1), (ethoxy)pentafluorocyclotriphosphazene (FR2) and pentafluoro(phenoxy)cyclotriphosphazene (FR3). A comparative study on the efficacy from a safety point of view is performed to determine the minimum percentages of each to be used in a conventional acetonitrile (ACN)/1.

View Article and Find Full Text PDF

Although disubstituted imidazolium cation is sterically crowded, hundreds of ionic liquids based on this cation have been reported as electrolytes for energy storage devices. In contrast to disubstituted imidazolium, non-substituted imidazolium is uncrowded sterically and has not yet been investigated as an electrolyte, to the best of our knowledge. Hence, imidazolium hydrogen sulfate [Imi][HSO], in mixture with water, was studied as an electrolyte for PANI-based electrode materials.

View Article and Find Full Text PDF

A few seconds flash photopyrolysis is used as efficient screening tool for the investigation of selected biomass in producing syngas, hydrogen and biochar. This innovative approach allowed rapid pyrolysis of the biomass, which was followed by a precise gas analysis and quantification, using Mass Spectrometry (MS). The analysis of the gas composition from three distinct biomass wastes in this study provides new insights into their thermochemical characteristics, expanding thus our knowledge of the potential of the selected biomass resources for the production of carbon, syngas, and/or hydrogen-rich gas production.

View Article and Find Full Text PDF

Lithium manganese oxide (LiMnO) is a prevalent cathode material for lithium-ion batteries due to its low cost, abundant material sources, and ecofriendliness. However, its capacity fade, low energy density, and fast auto-discharge hinders its large-scale commercialization. Consequently, scientists are urged to achieve high-performance LMO cathodes through material doping and surface modification using a wide range of transition metals, polymers, and carbon precursors.

View Article and Find Full Text PDF

Safer-by-design and sustainable energy storage devices are envisioned to be among the required 2.0 solutions to satisfy the fast growing energy demands. Responding to this evolution cannot be freed from a global and synergetic approach to design the requisite electrolytes taking into account the toxicity, the eco-compatibility and the cost of their constituents.

View Article and Find Full Text PDF

Polyaniline (PANI) was synthesized using oxidative polymerization in a mixture of water with pyrrolidinium hydrogen sulfate [Pyrr][HSO], which is a protic ionic liquid PIL. The obtained PANI (PANI/PIL) was compared with conventional PANI (PANI/HCl and PANI/HSO) in terms of their morphological, structural, and storage properties. The results demonstrate that the addition of this PIL to a polymerization medium leads to a fiber-like morphology, instead of a spherical-like morphology, of PANI/HSO or an agglomerated morphology of PANI/HCl.

View Article and Find Full Text PDF

Sodium-ion batteries (NIBs) are promising candidates for specific stationary applications considering their low-cost and cost-effective energetic property compared to lithium-ion batteries (LIBs). Additional cost cutbacks are achievable by employing natural materials as active cathode materials for NIBs. In this work, we report the use of natural pyrolusite (β-MnO) as a precursor for the synthesis of a NaMnO blend (a mixture of layered P2-NaMnAlO without any doping technique combined with a post-spinel NaMnO without any high-pressure synthesis).

View Article and Find Full Text PDF

Coal samples of different ranks were investigated through various compositional, morphological/structural, and textural experiments prior to their electrochemical implementation in Na-ion half-cells. The purity of coals proved insignificant while distinctions in the flake size, pore width, pore distribution, I/I ratio, crystallite parameters (L and L) along with adjacent parameters, such as the R-empirical parameter, i.e.

View Article and Find Full Text PDF

The redefinition of the commonly named "water-in-salt" clarifies the operating temperatures of the state-of-the-art LiTFSI-based aqueous solutions. An in-depth study shows its mismatch for low temperature applications. In contrast, the recommended strategy is to design an electrolyte with an invariant composition, as exemplified by the eutectic water/LiNO3 that is able to electrochemically cycle down to -23 °C.

View Article and Find Full Text PDF

The increasing need in the development of storage devices is calling for the formulation of alternative electrolytes, electrochemically stable and safe over a wide range of conditions. To achieve this goal, electrolyte chemistry must be explored to propose alternative solvents and salts to the current acetonitrile (ACN) and tetraethylammonium tetrafluoroborate (EtNBF) benchmarks, respectively. Herein, phenylacetonitrile (Ph-ACN) has been proposed as a novel alternative solvent to ACN in supercapacitors.

View Article and Find Full Text PDF

This work provides a study based on acyclic and cyclic sulfonium ionic liquids (ILs) with alkyl and ether-functionality on the cation paired with the bis{(trifluoromethyl)sulfonyl}imide, [TFSI] , or the bis(fluorosulfonyl)imide, [FSI] , as the counter anion. Herein, thermophysical characterisation of nine sulfonium-based ILs concerning the density, viscosity and conductivity and thermal properties including phase transition behaviour and decomposition temperature is reported. The electrochemical stability of the ILs was also measured by cyclic voltammetry at a glassy carbon macro-disk electrode.

View Article and Find Full Text PDF

Recently, dinitriles (NC(CH ) CN) and especially adiponitrile (ADN, n=4) have attracted attention as safe electrolyte solvents owing to their chemical stability, high boiling points, high flash points, and low vapor pressure. The good solvation properties of ADN toward lithium salts and its high electrochemical stability (≈6 V vs. Li/Li ) make it suitable for safer Li-ions cells without performance loss.

View Article and Find Full Text PDF

A screen-printed carbon electrode modified with both HRP and LOD (SPCE-HRP/LOD) has been developed for the determination of L-lactate concentration in real samples. The resulting SPCE-HRP/LOD was prepared in a one-step procedure, and was then optimised as an amperometric biosensor operating at [0, -100]mV versus Ag/AgCl for L-lactate determination in flow injection mode. A significant improvement in the reproducibility (coefficient variation of about 10%) of the preparation of the biosensors was obtained when graphite powder was modified with LOD in the presence of HRP previously oxidised by periodate ion (IO4-).

View Article and Find Full Text PDF