Publications by authors named "Forum S Shah"

The capability of multipotent mesenchymal stem cells to maintain cell viability, phenotype and differentiation ability upon thawing is critical if they are to be banked and used for future therapeutic purposes. In the present study, we examined the effect of 9-10 months of cryostorage on the morphology, immunophenotype, colony-forming unit (CFU) and differentiation capacity of fresh and cryopreserved human adipose-derived stromal/stem cells (ASCs) from the same donors. Cryopreservation did not reduce the CFU frequency and the expression levels of CD29, CD73, CD90 and CD105 remained unchanged with the exception of CD34 and CD45; however, the differentiation capacity of cryopreserved ASCs relative to fresh cells was significantly reduced.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores adipose-derived stromal/stem cells (ASC) as a valuable resource for tissue engineering, comparing cells isolated from omental (abdominal) and subcutaneous (under the skin) fat.
  • Human tissue samples were obtained with consent from surgical patients, and ASC were cultured and differentiated into fat or bone cells.
  • While omental and subcutaneous ASC had similar yields and initial characteristics, omental ASC showed significantly lower capacity to differentiate into adipogenic cells, indicating they are not interchangeable for regenerative medicine purposes.
View Article and Find Full Text PDF

Introduction: While administration of ex vivo culture-expanded stem cells has been used to study immunosuppressive mechanisms in multiple models of autoimmune diseases, less is known about the uncultured, nonexpanded stromal vascular fraction (SVF)-based therapy. The SVF is composed of a heterogeneous population of cells and has been used clinically to treat acute and chronic diseases, alleviating symptoms in a range of tissues and organs.

Methods: In this study, the ability of human SVF cells was compared with culture-expanded adipose stem cells (ASCs) and bone-derived marrow stromal cells (BMSCs) as a treatment of myelin oligodendrocyte glycoprotein (35-55)-induced experimental autoimmune encephalitis in C57Bl/6J mice, a well-studied multiple sclerosis model (MS).

View Article and Find Full Text PDF

Background Aims: The isolation of human adipose stromal/stem cells (ASCs) currently relies on the use of the enzyme collagenase, which digests the triple helix region of peptide bonds in the collagen of adipose tissue. Collagenase is an expensive reagent derived from a bacterial source, and its use in isolating ASCs is a time-consuming procedure. This experiment evaluated the extraction of ASCs without an enzymatic digest.

View Article and Find Full Text PDF

Biological aging alters the metabolism and volume of adipose tissue depots. Recent evidence suggests that circadian mechanisms play a role in promoting adipogenesis, obesity, and lipodystrophy. The current study compared cohorts of younger (5-9 months) and older (24-28 months) C57BL/6 mice as a function of biological age and circadian time.

View Article and Find Full Text PDF