Microbial biosurfactants have garnered significant interest from industry due to their lower toxicity, biodegradability, activity at lower concentrations and higher resistance compared to synthetic surfactants. The deep-sea Rhodococcus sp. I2R has been identified as a producer of glycolipid biosurfactants, specifically succinoyl trehalolipids, which exhibit antiviral activity.
View Article and Find Full Text PDFThe Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to.
View Article and Find Full Text PDFThe continuous outbreak of drug-resistant bacterial and viral infections imposes the need to search for new drug candidates. Natural products from marine bacteria still inspire the design of pharmaceuticals. Indeed, marine bacteria have unique metabolic flexibility to inhabit each ecological niche, thus expanding their biosynthetic ability to assemble unprecedented molecules.
View Article and Find Full Text PDFThe South Shetland Trough, Antarctica, is an underexplored region for microbiological and biotechnological exploitation. Herein, we describe the isolation and characterization of the novel bacterium sp. nov.
View Article and Find Full Text PDFis a Gram-positive opportunistic human pathogen responsible for severe infections and thousands of deaths annually, mostly due to its multidrug-resistant (MDR) variants. The cell membrane has emerged as a promising new therapeutic target, and lipophilic molecules, such as biosurfactants, are currently being utilized. Herein, we evaluated the antimicrobial activity of a rhamnolipids mixture produced by the Antarctic marine bacterium M15.
View Article and Find Full Text PDFThe production and disposal of plastics from limited fossil reserves, has prompted research for greener and sustainable alternatives. Polyhydroxyalkanoates (PHAs) are biocompatible, biodegradable, and thermoprocessable polyester produced by microbes. PHAs found several applications but their use is limited due to high production cost and low yields.
View Article and Find Full Text PDFPyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus . Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes' survival by mediating biofilm formation and virulence.
View Article and Find Full Text PDFMicroalgae are increasingly recognised as suitable microorganisms for heavy metal (HM) removal, since they are able to adsorb them onto their cell wall and, in some cases, compartmentalise them inside organelles. However, at relatively high HM concentrations, they could also show signs of stress, such as organelle impairments and increased activities of antioxidant enzymes. The main aim of this review is to report on the mechanisms adopted by microalgae to counteract detrimental effects of high copper (Cu) concentrations, and on the microalgal potential for Cu bioremediation of aquatic environments.
View Article and Find Full Text PDFA local strain of () has been reported as the most productive microalgal strain in terms of both biomass yield and lipid content when cultivated in photobioreactors that simulate the light and temperature conditions during the summer on the west coast of Sweden. To further increase the biomass and the biotechnological potential of this strain in these conditions, mixotrophic growth (i.e.
View Article and Find Full Text PDFMarine pharmacology is an exciting and growing discipline that blends blue biotechnology and natural compound pharmacology together. Several sea-derived compounds that are approved on the pharmaceutical market were discovered in sponges, marine organisms that are particularly rich in bioactive metabolites. This paper was specifically aimed at reviewing the pharmacological activities of extracts or purified compounds from marine sponges that were collected in the Mediterranean Sea, one of the most biodiverse marine habitats, filling the gap in the literature about the research of natural products from this geographical area.
View Article and Find Full Text PDFEmerging and re-emerging viruses represent a serious threat to human health at a global level. In particular, enveloped viruses are one of the main causes of viral outbreaks, as recently demonstrated by SARS-CoV-2. An effective strategy to counteract these viruses could be to target the envelope by using surface-active compounds.
View Article and Find Full Text PDFNatural products of microbial origin have inspired most of the commercial pharmaceuticals, especially those from Actinobacteria. However, the redundancy of molecules in the discovery process represents a serious issue. The untargeted approach, One Strain Many Compounds (OSMAC), is one of the most promising strategies to induce the expression of silent genes, especially when combined with genome mining and advanced metabolomics analysis.
View Article and Find Full Text PDFExtreme marine environments are potential sources of novel microbial isolations with dynamic metabolic activity. J1ID was isolated from sediments originated from Deception Island, Antarctica, grown over phenanthrene. This strain was also assessed for its emulsifying activity.
View Article and Find Full Text PDFExtremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China.
View Article and Find Full Text PDFFollowing the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved.
View Article and Find Full Text PDFThe marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites.
View Article and Find Full Text PDFRhamnolipids (RLs) are surface-active molecules mainly produced by Antarctica is one of the less explored places on Earth and bioprospecting for novel RL producer strains represents a promising strategy for the discovery of novel structures. In the present study, 34 cultivable bacteria isolated from Edmonson Point Lake, Ross Sea, Antarctica were subjected to preliminary screening for the biosurfactant activity. The positive strains were identified by 16S rRNA gene sequencing and the produced RLs were characterized by liquid chromatography coupled to high resolution mass spectrometry (LC-HRESIMS) and liquid chromatography coupled with tandem spectrometry (LC-MS/MS), resulting in a new mixture of 17 different RL congeners, with six previously undescribed RLs.
View Article and Find Full Text PDFA wide range of prescreening tests for antimicrobial activity of 59 bacterial isolates from sediments of Ria Formosa Lagoon (Algarve, Portugal) disclosed 3.6 as the most active antibacterial producing strain. This bacterial strain, which has not previously been submitted for chemical profiling, was subjected to whole genome sequencing, which aided in the discovery and elucidation of a prodigiosin biosynthetic gene cluster that was predicted by the bioinformatic tool KEGG BlastKoala.
View Article and Find Full Text PDFThe increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity.
View Article and Find Full Text PDFMicrobes are prolific sources of bioactive molecules; however, the cultivability issue has severely hampered access to microbial diversity. Novel secondary metabolites from as-yet-unknown or atypical microorganisms from extreme environments have realistic potential to lead to new drugs with benefits for human health. Here, we used a novel approach that mimics the natural environment by using a Miniaturized Culture Chip allowing the isolation of several bacterial strains from Antarctic shallow water sediments under near natural conditions.
View Article and Find Full Text PDFThe combination of LC-MS/MS based metabolomics approach and anti-MRSA activity-guided fractionation scheme was applied on the Gram-negative bacterium sp. isolated from shallow Antarctic sea sediment using a miniaturized culture chip technique. This methodology afforded the isolation of three new (⁻) and four known (⁻) N-terminal glycine- or serine-bearing -fatty acid amides esterified with another -fatty acid through their C-3 hydroxy groups.
View Article and Find Full Text PDFThe exploration of poorly studied areas of Earth can highly increase the possibility to discover novel bioactive compounds. In this study, the cultivable fraction of fungi and bacteria from Barents Sea sediments has been studied to mine new bioactive molecules with antibacterial activity against a panel of human pathogens. We isolated diverse strains of psychrophilic and halophilic bacteria and fungi from a collection of nine samples from sea sediment.
View Article and Find Full Text PDFThis protocol describes two biological assays to evaluate pathogenicity of complex (Bcc) strains against the nematode Specifically, these two assays allow one to identify if the under-investigated Bcc strains are able to kill the nematodes by intestinal colonization (slow killing assay, SKA) or by toxins production (fast killing assay, FKA). The principal differences between the two assays rely on the different killing kinetics for worms.
View Article and Find Full Text PDFMarine fungi represent an important but still largely unexplored source of novel and potentially bioactive secondary metabolites. The antimicrobial activity of nine sterile mycelia isolated from the green alga Flabellia petiolata collected from the Mediterranean Sea was tested on four antibiotic-resistant bacterial strains using extracellular and intracellular extracts obtained from each fungal strain. The isolated fungi were identified at the molecular level and assigned to one of the Dothideomycetes, Sordariomycetes or Eurotiomycetes classes.
View Article and Find Full Text PDFMicroorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites.
View Article and Find Full Text PDF