A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm.
View Article and Find Full Text PDFAfrican swine fever (ASF) has gained panzootic dimensions and commercial vaccines are still unavailable. Recently, a series of live attenuated vaccines has raised hope for an efficacious and safe vaccine, among them "ASFV-G-∆MGF". We tested the latter in an in vivo reversion to virulence study in accordance with International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products guidelines.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a high-consequence transboundary hemorrhagic fever of swine. It continues to spread across the globe causing socio-economic issues and threatening food security and biodiversity. In 2020, Nigeria reported a major ASF outbreak, killing close to half a million pigs.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a pandemic threat to the global pig industry and wild suids. A safe and efficacious vaccine could monumentally assist in disease eradication. In the past years, promising live attenuated vaccine candidates emerged in proof-of-concept experiments, among which was "ASFV-G-∆MGF".
View Article and Find Full Text PDFPhenotypic targeting requires the ability of the drug delivery system to discriminate over cell populations expressing a particular receptor combination. Such selectivity control can be achieved using multiplexed-multivalent carriers often decorated with multiple ligands. Here, we demonstrate that the promiscuity of a single ligand can be leveraged to create multiplexed-multivalent carriers achieving phenotypic targeting.
View Article and Find Full Text PDFSoft robots, made from elastomers, easily bend and flex, but deformability constraints severely limit navigation through and within narrow, confined spaces. Using aqueous two-phase systems we print water-in-water constructs that, by aqueous phase-separation-induced self-assembly, produce ultrasoft liquid robots, termed aquabots, comprised of hierarchical structures that span in length scale from the nanoscopic to microsciopic, that are beyond the resolution limits of printing and overcome the deformability barrier. The exterior of the compartmentalized membranes is easily functionalized, for example, by binding enzymes, catalytic nanoparticles, and magnetic nanoparticles that impart sensitive magnetic responsiveness.
View Article and Find Full Text PDFTick cell lines are important tools for research on ticks and the pathogens they transmit. Here, we report the establishment of ten new cell lines from European ticks of the genera , , , and originating from Germany and Spain. For each cell line, the method used to generate the primary culture, a morphological description of the cells and species confirmation by sequencing of the partial 16S rRNA gene are presented.
View Article and Find Full Text PDFThe introduction of genotype II African swine fever (ASF) virus, presumably from Africa into Georgia in 2007, and its continuous spread through Europe and Asia as a panzootic disease of suids, continues to have a huge socio-economic impact. ASF is characterized by hemorrhagic fever leading to a high case/fatality ratio in pigs. In Europe, wild boar are especially affected.
View Article and Find Full Text PDFFine control over the mechanical properties of thin sheets underpins transcytosis, cell shape, and morphogenesis. Applying these principles to artificial, liquid-based systems has led to reconfigurable materials for soft robotics, actuation, and chemical synthesis. However, progress is limited by a lack of synthetic two-dimensional membranes that exhibit tunable mechanical properties over a comparable range to that seen in nature.
View Article and Find Full Text PDFWe report the design, simulation, synthesis, and reversible self-assembly of nanofibrils using polyhistidine-based oligopeptides. The inclusion of aromatic amino acids in the histidine block produces distinct antiparallel β-strands that lead to the formation of amyloid-like fibrils. The structures undergo self-assembly in response to a change in pH.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a highly pathogenic viral disease affecting all Suidae, with Ornithodoros moubata complex soft ticks acting as the biological arthropod vectors of the causative agent, African swine fever virus (ASFV). While ASFV is also transmissible via direct contact, pig products and fomites, other arthropods may be involved in virus transmission and persistence. Therefore, we checked various groups of blood-feeding arthropods collected during summer 2017 in wild boar habitats on the Estonian Island of Saaremaa for the presence of ASFV.
View Article and Find Full Text PDFMicroemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use.
View Article and Find Full Text PDFThe blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor-related protein 1 (LRP1) to investigate the mechanisms of transport across BECs.
View Article and Find Full Text PDFTicks (Chelicerata, Ixodida) are blood-feeding ectoparasites believed to have evolved at least about 120 millions of years ago and found worldwide. However, many aspects of their unique life cycle and anatomy, including their mechanical properties, remain to be understood. Here, we compared the mechanical properties of the cuticle of the argasid tick Ornithodoros moubata to those of two species of ixodid tick, Amblyomma hebraeum and Ixodes pacificus that we explored in our earlier studies of the tick exoskeleton.
View Article and Find Full Text PDFMicrobiol Resour Announc
October 2020
Between June 2017 and April 2018, an outbreak of African swine fever (ASF) affected wild boar in the southeast of the Czech Republic. Here, we present the whole-genome sequence of the causative ASF virus. It belongs to genotype II and shows very high identity with other strains from Eastern Europe.
View Article and Find Full Text PDFAfrican swine fever (ASF) has spread across many countries in Europe since the introduction into Georgia in 2007. We report here on the first cases of ASF in wild boar detected in Germany close to the border with Poland. In addition to the constant risk of ASF virus (ASFV) spread through human activities, movements of infected wild boar also represent a route of introduction.
View Article and Find Full Text PDFBackground: African swine fever virus (ASFV) is a most devastating pathogen affecting swine. In 2007, ASFV was introduced into Eastern Europe where it continuously circulates and recently reached Western Europe and Asia, leading to a socio-economic crisis of global proportion. In Africa, where ASFV was first described in 1921, it is transmitted between warthogs and soft ticks of the genus Ornithodoros in a so-called sylvatic cycle.
View Article and Find Full Text PDFThe targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area.
View Article and Find Full Text PDFThe pandemic spread of African swine fever virus (ASFV) genotype II (GTII) has led to a global crisis. Since the circulating strains are almost identical, time and money have been mis-invested in whole-genome sequencing the last years. New methods, harmonised protocols for sample selection, sequencing, and bioinformatics are therefore urgently needed.
View Article and Find Full Text PDFProducing artificial multicellular structures to process multistep cascade reactions and mimic the fundamental aspects of living systems is an outstanding challenge. Highly biocompatible, artificial systems consisting of all-aqueous, compartmentalized multicellular systems have yet to be realized. Here, a rapid multilevel compartmentalization of an all-aqueous system where a 3D sheet of subcolloidosomes encloses a mother colloidosome by interfacial phase separation is demonstrated.
View Article and Find Full Text PDFNatural and man-made robotic systems use the interfacial tension between two fluids to support dense objects on liquid surfaces. Here, we show that coacervate-encased droplets of an aqueous polymer solution can be hung from the surface of a less dense aqueous polymer solution using surface tension. The forces acting on and the shapes of the hanging droplets can be controlled.
View Article and Find Full Text PDF