Publications by authors named "Forsby A"

Background/objectives: Many pregnant women globally suffer from depression and are routinely prescribed selective serotonin reuptake inhibitors (SSRIs). These drugs function by blocking the re-uptake of serotonin by the serotonin transporter (SERT) into neurons, resulting in its accumulation in the presynaptic cleft. Despite a large amount of research suggesting a potential link to neurodevelopmental disorders in children whose mothers took these drugs during pregnancy, their possible adverse effects are still debated, and results are contradictory.

View Article and Find Full Text PDF

Acrylamide (ACR) is a known neurotoxicant that can pass the placenta and has been detected in breast milk. Some in vivo and in vitro studies indicate that ACR exposure might lead to developmental neurotoxicity (DNT). Here, we have developed a physiologically-based toxicokinetic model for a pregnant human population using PK-Sim.

View Article and Find Full Text PDF

Hormone signaling plays an essential role during fetal life and is vital for brain development. Endocrine-disrupting chemicals can interfere with the hormonal milieu during this critical time-period, disrupting key neurodevelopmental processes. Hence, there is a need for the development of assays that evaluate developmental neurotoxicity (DNT) induced by an endocrine mode of action.

View Article and Find Full Text PDF

Acrylamide (ACR) is a known neurotoxicant and developmental neurotoxicant. As a soft electrophile, ACR reacts with thiol groups in cysteine. One hypothesis of ACR induced neurotoxicity and developmental neurotoxicity (DNT) is conjugation with reduced glutathione (GSH) leading to GSH depletion, increased reactive oxygen species (ROS) production and further oxidative stress and cellular damage.

View Article and Find Full Text PDF

The cyanotoxin cylindrospermopsin (CYN) has been postulated to cause neurotoxicity, although the studies in this concern are very few. In addition, some studies in vitro indicate its possible effects on development. Furthermore, pesticides can be present in the same environmental samples as cyanotoxins.

View Article and Find Full Text PDF

Analysis of the transcriptomic alterations upon chemical challenge, provides in depth mechanistic information on the compound's toxic mode of action, by revealing specific pathway activation and other transcriptional modulations. Mapping changes in cellular behaviour to chemical insult, facilitates the characterisation of chemical hazard. In this study, we assessed the transcriptional landscape of mitochondrial impairment through the inhibition of the electron transport chain (ETC) in a human renal proximal tubular cell line (RPTEC/TERT1).

View Article and Find Full Text PDF

Current guidelines for developmental neurotoxicity (DNT) evaluation are based on animal models. These have limitations so more relevant, efficient and robust approaches for DNT assessment are needed. We have used the human SH-SY5Y neuroblastoma cell model to evaluate a panel of 93 mRNA markers that are frequent in Neuronal diseases and functional annotations and also differentially expressed during retinoic acid-induced differentiation in the cell model.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a developmental neurotoxicant, and one potential mechanism of MeHg toxicity is epigenetic dysregulation. In a recent meta-analysis of epigenome-wide association studies (EWAS), associations between prenatal MeHg exposure and DNA methylation at several genomic sites were identified in blood from newborns and children. While EWASs reveal human-relevant associations, experimental studies are required to validate the relationship between exposure and DNA methylation changes, and to assess if such changes have implications for gene expression.

View Article and Find Full Text PDF

The need for reliable, sensitive (developmental) neurotoxicity testing of chemicals has steadily increased. Given the limited capacities for routine testing according to accepted regulatory guidelines, there is potential risk to human health and the environment. Most toxicity studies are based on mammalian test systems, which have been questioned for low sensitivity, limited relevance for humans, and animal welfare considerations.

View Article and Find Full Text PDF

Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial functionality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated cell viability, whereas CII inhibitors had no effect.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that certain neonicotinoids, particularly desnitro-imidacloprid (DN-IMI), activate nicotinic acetylcholine receptors (nAChRs) in human neurons and may pose a dietary risk.
  • DN-IMI shows strong receptor activation comparable to nicotine at low concentrations, while another metabolite, IMI-olefin, is less effective.
  • Experimental data confirm that DN-IMI interacts with key nAChR subtypes in a similar manner to nicotine, implying potential neurotoxic effects similar to those of nicotine.
View Article and Find Full Text PDF

Read-across approaches are considered key in moving away from in vivo animal testing towards addressing data-gaps using new approach methods (NAMs). Ample successful examples are still required to substantiate this strategy. Here we present and discuss the learnings from two OECD IATA endorsed read-across case studies.

View Article and Find Full Text PDF

Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling.

View Article and Find Full Text PDF

There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs.

View Article and Find Full Text PDF

Inhibition of complex I of the mitochondrial respiratory chain (cI) by rotenone and methyl-phenylpyridinium (MPP +) leads to the degeneration of dopaminergic neurons in man and rodents. To formally describe this mechanism of toxicity, an adverse outcome pathway (AOP:3) has been developed that implies that any inhibitor of cI, or possibly of other parts of the respiratory chain, would have the potential to trigger parkinsonian motor deficits. We used here 21 pesticides, all of which are described in the literature as mitochondrial inhibitors, to study the general applicability of AOP:3 or of in vitro assays that are assessing its activation.

View Article and Find Full Text PDF

Acrylamide (ACR) is a known neurotoxicant which crosses the blood-brain barrier, passes the placenta and has been detected in breast milk. Hence, early-life exposure to ACR could lead to developmental neurotoxicity. The aim of this study was to elucidate if non-cytotoxic concentrations of ACR alter neuronal differentiation by studying gene expression of markers significant for neurodevelopment in the human neuroblastoma SH-SY5Y cell model.

View Article and Find Full Text PDF

Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes.

View Article and Find Full Text PDF

Evidence is mounting for the central role of mitochondrial dysfunction in several pathologies including metabolic diseases, accelerated ageing, neurodegenerative diseases and in certain xenobiotic-induced organ toxicity. Assessing mitochondrial perturbations is not trivial and the outcomes of such investigations are dependent on the cell types used and assays employed. Here we systematically investigated the effect of electron transport chain (ETC) inhibitors on multiple mitochondrial-related parameters in two human cell types, HepG2 and RPTEC/TERT1.

View Article and Find Full Text PDF

Many neurotoxicants affect energy metabolism in man, but currently available test methods may still fail to predict mito- and neurotoxicity. We addressed this issue using LUHMES cells, i.e.

View Article and Find Full Text PDF

Toxicological and pharmacological information from human cells and tissues provides knowledge readily applicable to human safety assessment and to the efficacy assessment of pharmaceuticals. The 3R principle in animal studies includes the use of human material in the R of Replacement. The Reduction and Refinement Rs are related to animal use.

View Article and Find Full Text PDF

Despite its high relevance, developmental neurotoxicity (DNT) is one of the least studied forms of toxicity. Current guidelines for DNT testing are based on in vivo testing and they require extensive resources. Transcriptomic approaches using relevant in vitro models have been suggested as a useful tool for identifying possible DNT-generating compounds.

View Article and Find Full Text PDF

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established.

View Article and Find Full Text PDF

Acute systemic toxicity testing provides the basis for hazard labeling and risk management of chemicals. A number of international efforts have been directed at identifying non-animal alternatives for in vivo acute systemic toxicity tests. A September 2015 workshop, Alternative Approaches for Identifying Acute Systemic Toxicity: Moving from Research to Regulatory Testing, reviewed the state-of-the-science of non-animal alternatives for this testing and explored ways to facilitate implementation of alternatives.

View Article and Find Full Text PDF
Article Synopsis
  • Neurotoxicity is when chemicals harm the nervous system, and scientists need better tests to understand this, especially since using animals for all tests isn't possible.
  • In the last 10 years, many new lab tests using different types of human and animal cells have been created to study how chemicals affect nerves.
  • It’s crucial to know how these tests work and what they measure to accurately predict how dangerous chemicals could be to humans.
View Article and Find Full Text PDF