Syndromic surveillance is an effective tool for enabling the timely detection of infectious disease outbreaks and facilitating the implementation of effective mitigation strategies by public health authorities. While various information sources are currently utilized to collect syndromic signal data for analysis, the aggregated measurement of cough, an important symptom for many illnesses, is not widely employed as a syndromic signal. With recent advancements in ubiquitous sensing technologies, it becomes feasible to continuously measure population-level cough incidence in a contactless, unobtrusive, and automated manner.
View Article and Find Full Text PDFSyndromic surveillance is an effective tool for enabling the timely detection of infectious disease outbreaks and facilitating the implementation of effective mitigation strategies by public health authorities. While various information sources are currently utilized to collect syndromic signal data for analysis, the aggregated measurement of cough, an important symptom for many illnesses, is not widely employed as a syndromic signal. With recent advancements in ubiquitous sensing technologies, it becomes feasible to continuously measure population-level cough incidence in a contactless, unobtrusive, and automated manner.
View Article and Find Full Text PDFProc ACM Interact Mob Wearable Ubiquitous Technol
March 2020
We developed a contactless syndromic surveillance platform that aims to expand the current paradigm of influenza-like illness (ILI) surveillance by capturing crowd-level bio-clinical signals directly related to physical symptoms of ILI from hospital waiting areas in an unobtrusive and privacy-sensitive manner. FluSense consists of a novel edge-computing sensor system, models and data processing pipelines to track crowd behaviors and influenza-related indicators, such as coughs, and to predict daily ILI and laboratory-confirmed influenza caseloads. uses a microphone array and a thermal camera along with a neural computing engine to passively and continuously characterize speech and cough sounds along with changes in crowd density on the edge in a real-time manner.
View Article and Find Full Text PDFGoal: Although photoplethysmographic (PPG) signals can monitor heart rate (HR) quite conveniently in hospital environments, trying to incorporate them during fitness programs poses a great challenge, since in these cases, the signals are heavily corrupted by motion artifacts.
Methods: In this paper, we present a novel signal processing framework which utilizes two channel PPG signals and estimates HR in two stages. The first stage eliminates any chances of a runaway error by resorting to an absolute criterion condition based on ensemble empirical mode decomposition.