Publications by authors named "Forro Laszlo"

The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism.

View Article and Find Full Text PDF

Owing to their exceptional mechanical, electronic, and phononic transport properties, compositionally complex alloys, including high-entropy alloys, represent an important class of materials. However, the interplay between chemical disorder and electronic correlations, and its influence on electronic structure-derived properties, remains largely unexplored. This is addressed for the archetypal CrMnFeCoNi alloy using resonant and valence band photoemission spectroscopy, electrical resistivity, and optical conductivity measurements, complemented by linear response calculations based on density functional theory.

View Article and Find Full Text PDF

Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy centers in a diamond single crystal.

View Article and Find Full Text PDF

For centuries, artisans have harnessed gold nanoparticles to imbue their creations with the vibrant hues that captivate the eye through interactions with visible light. In modern times, these distinct optoelectronic characteristics have pivoted toward the forefront of innovative technologies, finding their niche in advanced applications from solar energy to medicine, overshadowing their artistic heritage. This investigation reimagines the utilitarian scope of gold by innovating the optical characteristics of gold-titania nanostructures.

View Article and Find Full Text PDF

Superconductivity in van der Waals materials, such as NbSe and TaS, is fundamentally novel due to the effects of dimensionality, crystal symmetries, and strong spin-orbit coupling. In this work, we perform tunnel spectroscopy on NbSe by utilizing MoS or hexagonal boron nitride (hBN) as a tunnel barrier. We observe subgap excitations and probe their origin by studying various heterostructure designs.

View Article and Find Full Text PDF

2-NbSe is a prototypical charge-density-wave (CDW) system, exhibiting such a symmetry-breaking quantum ground state in its bulk and down to a single-atomic-layer limit. However, how this state depends on dimensionality and what governs the dimensionality effect remain controversial. Here, we experimentally demonstrate a robust 3 × 3 CDW phase in both freestanding and substrate-supported bilayer NbSe, far above the bulk transition temperature.

View Article and Find Full Text PDF

Proximity-induced superconductivity in a ferromagnet can induce Cooper pairs with a finite center-of-mass momentum and stabilize Josephson junctions (JJs) with π phase difference in superconductor-ferromagnet-superconductor heterostructures. The emergence of two-dimensional layered superconducting and magnetic materials promises a new platform for realizing π JJs with atomically sharp interfaces. Here we demonstrate a thickness-driven 0-π transition in JJs made of NbSe (an Ising superconductor) and CrGeTe (a ferromagnetic semiconductor).

View Article and Find Full Text PDF

Interest in fast and easy detection of high-energy radiation (x-, γ-rays and neutrons) is closely related to numerous practical applications ranging from biomedicine and industry to homeland security issues. In this regard, crystals of hybrid halide perovskite have proven to be excellent detectors of x- and γ-rays, offering exceptionally high sensitivities in parallel to the ease of design and handling. Here, we demonstrate that by assembling a methylammonium lead tri-bromide perovskite single crystal (CHNHPbBr SC) with a Gadolinium (Gd) foil, one can very efficiently detect a flux of thermal neutrons.

View Article and Find Full Text PDF

Under stress conditions, elevated levels of cellular reactive oxygen species (ROS) may impair crucial cellular structures. To counteract the resulting oxidative damage, living cells are equipped with several defense mechanisms, including photoprotective functions of specific proteins. Here, we discuss the plausible ROS scavenging mechanisms by the enhanced green fluorescent protein, EGFP.

View Article and Find Full Text PDF

Organic-inorganic lead halide perovskite (CHNHPbI) solar cells have surpassed 25% power conversion efficiency, being ready for industrial-scale production of cheap photovoltaic (PV) panels. In this action, the major hurdle is its lead content, which in case of device failure, could be washed into the soil, entering the food chain. Since there is a zero tolerance on lead in the human organism, this health hazard is a critical obstacle for commercialization.

View Article and Find Full Text PDF

X-ray photon detection is important for a wide range of applications. The highest demand, however, comes from medical imaging, which requires cost-effective, high-resolution detectors operating at low-photon flux, therefore stimulating the search for novel materials and new approaches. Recently, hybrid halide perovskite CHNHPbI (MAPbI) has attracted considerable attention due to its advantageous optoelectronic properties and low fabrication costs.

View Article and Find Full Text PDF

Gamma-rays (-rays), wherever present, e.g., in medicine, nuclear environment, or homeland security, due to their strong impact on biological matter, should be closely monitored.

View Article and Find Full Text PDF

The crystals of a novel family of rare-earth borate-nitrate compounds, (BO)(NO)NO ( = Pr, Nd), were grown at high-pressure in KAs flux and their crystal structure was determined. The new type of the crystalline structure consists of parallel chains of octahedra connected by common faces and forming the channels with the NO triangular planar motifs in the center, and isolated O tetrahedra separated from each other by N triangular motifs. Each NO triangle is in fact a part of rather unusual (NBO) block consisting of 3 distorted BO tetrahedra around central nitrogen atom.

View Article and Find Full Text PDF

Recent interest in potassium-doped -terphenyl has been fueled by reports of superconductivity at values surprisingly high for organic compounds. Despite these interesting properties, studies of the structure-function relationships within these materials have been scarce. Here, we isolate a phase-pure crystal of potassium-doped -terphenyl: [K()][-terphenyl].

View Article and Find Full Text PDF

The exotic properties of quantum spin liquids (QSLs) have continually been of interest since Anderson's 1973 ground-breaking idea. Geometrical frustration, quantum fluctuations, and low dimensionality are the most often evoked material's characteristics that favor the long-range fluctuating spin state without freezing into an ordered magnet or a spin glass at low temperatures. Among the few known QSL candidates, organic crystals have the advantage of having rich chemistry capable of finely tuning their microscopic parameters.

View Article and Find Full Text PDF

In the last couple decades, several viral outbreaks resulting in epidemics and pandemics with thousands of human causalities have been witnessed. The current Covid-19 outbreak represents an unprecedented crisis. In stopping the virus' spread, it is fundamental to have personal protective equipment and disinfected surfaces.

View Article and Find Full Text PDF

Charge density wave (CDW) is a startling quantum phenomenon, distorting a metallic lattice into an insulating state with a periodically modulated charge distribution. Astonishingly, such modulations appear in various patterns even within the same family of materials. Moreover, this phenomenon features a puzzling diversity in its dimensional evolution.

View Article and Find Full Text PDF

By a micro-experimental methodology, we study the ongoing molecular process inside coarse fibrin networks by means of microrheology. We made these networks gelate around a probe microbead, allowing us to observe a temporal evolution compatible with the well-known molecular formation of fibrin networks in four steps: monomer, protofibril, fiber and network. Thanks to the access that optical-trapping interferometry provides to the short-time scale on the bead's Brownian motion, we observe a Kelvin-Voigt mechanical behavior from low to high frequencies, range not available in conventional rheometry.

View Article and Find Full Text PDF

Most digital information today is encoded in the magnetization of ferromagnetic domains. The demand for ever-increasing storage space fuels continuous research for energy-efficient manipulation of magnetism at smaller and smaller length scales. Writing a bit is usually achieved by rotating the magnetization of domains of the magnetic medium, which relies on effective magnetic fields.

View Article and Find Full Text PDF

In a seminal paper, Mahan predicted that excitonic bound states can still exist in a semiconductor at electron-hole densities above the insulator-to-metal Mott transition. However, no clear evidence for this exotic quasiparticle, dubbed Mahan exciton, exists to date at room temperature. In this work, we combine ultrafast broadband optical spectroscopy and advanced many-body calculations to reveal that organic-inorganic lead-bromide perovskites host Mahan excitons at room temperature.

View Article and Find Full Text PDF

We studied the effect of the exposure of human A549 and SH-SY5Y cell lines to aqueous solutions of organic/inorganic halide perovskites CHNHPbI (MAPbI) and CHNHSnI (MASnI) at the molecular level by using Fourier transform infrared microspectroscopy. We monitored the infrared spectra of some cells over a few days following exposure to the metals and observed the spectroscopic changes dominated by the appearance of a strong band at 1627 cm. We used Infrared (IR) mapping to show that this change was associated with the cell itself or the cellular membrane.

View Article and Find Full Text PDF

An efficient route to synthesize macroscopic amounts of graphene is highly desired and bulk characterization of such samples, in terms of the number of layers, is equally important. We present a Raman spectroscopy-based method to determine the typical upper limit of the number of graphene layers in chemically exfoliated graphene. We utilize a controlled vapour-phase potassium intercalation technique and identify a lightly doped stage, where the Raman modes of undoped and doped few-layer graphene flakes coexist.

View Article and Find Full Text PDF

The evolution of the magnetic anisotropy directions has been studied in a magnetite (FeO) thin film grown by infrared pulsed-laser deposition on SrTiO(100):Nb substrate. The magnetic easy axes at room temperature are found along the in-plane 〈100〉 film directions, which means a rotation of the easy axis by 45° with respect to the directions typically reported for bulk magnetite and films grown on single-crystal substrates. Moreover, when undergoing the Verwey transition temperature, T, the easy axis orientation evolves to the 〈110〉 film directions.

View Article and Find Full Text PDF

In the Ca La FeAs (1 1 2) family of pnictide superconductors, we have investigated a highly overdoped composition (x  =  0.56), prepared by a high-pressure, high-temperature synthesis. Magnetic measurements show an antiferromagnetic transition at T   =  120 K, well above the one at lower doping (0.

View Article and Find Full Text PDF

The photovoltaic perovskite, methylammonium lead triiodide [CHNHPbI (MAPbI)], is one of the most efficient materials for solar energy conversion. Various kinds of chemical and physical modifications have been applied to MAPbI towards better understanding of the relation between composition, structure, electronic properties and energy conversion efficiency of this material. Pressure is a particularly useful tool, as it can substantially reduce the interatomic spacing in this relatively soft material and cause significant modifications to the electronic structure.

View Article and Find Full Text PDF