While the application of diffusion tensor imaging (DTI), tractography, and connectomics to fixed tissue is a common practice today, there have been limited studies examining the effects of fixation on brain microstructure over extended periods. This mouse model time-course study reports the changes of regional brain volumes and diffusion scalar parameters, such as fractional anisotropy, across 12 representative brain regions as measures of brain structural stability. The scalar DTI parameters and regional volumes were highly variable over the first 2 weeks after fixation.
View Article and Find Full Text PDFWe describe a multi-contrast, multi-dimensional atlas of the Wistar rat acquired at microscopic spatial resolution using magnetic resonance histology (MRH). Diffusion weighted images, and associated scalar images were acquired of a single specimen with a fully sampled Fourier reconstruction, 61 angles and b=3000 s/mm yielding 50 um isotropic spatial resolution. The higher angular sampling allows use of the GQI algorithm improving the angular invariance of the scalar images and yielding an orientation distribution function to assist in delineating subtle boundaries where there are crossing fibers and track density images providing insight into local fiber architecture.
View Article and Find Full Text PDFMethods have been developed to allow quantitative connectivity of the whole fixed mouse brain by means of magnetic resonance imaging (MRI). We have translated what we have learned in clinical imaging to the very special domain of the mouse brain. Diffusion tensor imaging (DTI) of perfusion fixed specimens can now be performed with spatial resolution of 45 μm , that is, voxels that are 21,000 times smaller than the human connectome protocol.
View Article and Find Full Text PDF