Publications by authors named "Forrest G FitzGerald"

Nature utilizes bioreversible post-translational modifications (PTMs) to spatiotemporally diversify protein function. Mimicking Nature's approach, chemists have developed a variety of chemoselective regents for traceless, bioreversible modification of native proteins. These strategies have found utility in the development of reversible covalent inhibitors and degraders as well as the synthesis of functional protein conjugates for delivery into cells.

View Article and Find Full Text PDF

Dynamic changes of a cell's glycophenotype are increasingly interpreted as shifts in the capacity to interact with tissue (endogenous) lectins. The status of glycan branching or chain length (e.g.

View Article and Find Full Text PDF

Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates.

View Article and Find Full Text PDF

Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for -acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat -glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out.

View Article and Find Full Text PDF

Aberrant Mucin-1 (MUC1) glycosylation with the Thomsen-Friedenreich (TF) tumor-associated antigen (CD176) is a hallmark of epithelial carcinoma progression and poor patient prognosis. Recognition of TF by glycan-binding proteins, such as galectins, enables the pathological repercussions of this glycan presentation, yet the underlying binding specificities of different members of the galectin family is a matter of continual investigation. While Galectin-3 (Gal-3) recognition of TF has been well-documented at both the cellular and molecular level, Galectin-1 (Gal-1) recognition of TF has only truly been alluded to in cell-based platforms.

View Article and Find Full Text PDF

Functional pairing between cellular glycoconjugates and tissue lectins like galectins has wide (patho)physiological significance. Their study is facilitated by nonhydrolysable derivatives of the natural O-glycans, such as S- and Se-glycosides. The latter enable extensive analyses by specific Se NMR spectroscopy, but still remain underexplored.

View Article and Find Full Text PDF

DNA-encoded library (DEL) technology is emerging as a key element of the small molecule discovery toolbox. Conventional DEL screens (i.e.

View Article and Find Full Text PDF

Discoveries on involvement of glycan-protein recognition in many (patho)physiological processes are directing attention to exploring the significance of a fundamental structural aspect of sugar receptors beyond glycan specificity, i.e., occurrence of distinct types of modular architecture.

View Article and Find Full Text PDF

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface.

View Article and Find Full Text PDF