Publications by authors named "Forrer P"

Introduction: Gram-negative bacillary bacteremia poses a significant threat, ranking among the most severe infectious diseases capable of triggering life-threatening sepsis. Despite the unambiguous involvement of neutrophils in this potentially fatal disease, there are limited data about the molecular signaling mechanisms, phenotype, and function of human neutrophils during the early phase of gram-negative bacillary bacteremia.

Methods: By using an unbiased proteomics and flow cytometry approach, we identified an antigen-presenting cell (APC)-like phenotype in human peripheral blood neutrophils (PMN) with MHC class II molecule expression in the early phase of bacteremia.

View Article and Find Full Text PDF

Background: Plaque psoriasis affects ~ 1% of the pediatric population, negatively impacting quality of life. The efficacy and safety of secukinumab in pediatric patients with moderate to severe or severe chronic plaque psoriasis have been established in two pivotal phase 3 trials (open-label, NCT03668613; double-blind, NCT02471144).

Objectives: The aims were to report the pooled safety of secukinumab up to 52 weeks from two studies in subgroups of pediatric patients stratified by age and bodyweight, and to present, alongside the pediatric data, the pooled safety data from four pivotal adult secukinumab trials.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that there is a need for biomarkers to predict treatment responses in psoriatic arthritis (PsA), particularly for therapies like secukinumab.
  • The study analyzed serum samples from nearly 2000 PsA patients, identifying that baseline levels of beta-defensin 2 (BD-2) strongly correlate with clinical response to secukinumab but not to placebo.
  • BD-2 levels also predict response to the drug adalimumab and are independent of psoriasis severity, emphasizing its potential as a valuable biomarker for personalized treatment in PsA.
View Article and Find Full Text PDF

Background: The efficacy and safety of biologic treatments for children and adolescents with moderate to severe psoriasis should be examined over a considerable time period and in different subgroups.

Objective: We report the efficacy and safety of secukinumab low dose (LD) and high dose (HD) regimens in pediatric patients with moderate to severe psoriasis for up to Week 52.

Methods: This was a randomized, open-label, parallel-group, multicenter study in patients aged  6 to < 18 years.

View Article and Find Full Text PDF

Designed ankyrin repeat proteins (DARPins) are antibody mimetics with high and mostly unexplored potential in drug development. By using in silico analysis and a rationally guided Ala scanning, we identified position 17 of the N-terminal capping repeat to play a key role in overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by 8 °C to 10 °C when Asp17 was replaced by Leu, Val, Ile, Met, Ala, or Thr.

View Article and Find Full Text PDF

A long systemic half-life is key for therapeutic proteins. To that end we have generated serum albumin-binding designed ankyrin repeat domains. These domains bind serum albumin of different species with nanomolar affinities, and have significantly improved pharmacokinetic properties both in mouse and cynomolgus monkey compared to non-serum albumin-binding DARPin® domains.

View Article and Find Full Text PDF

Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage.

View Article and Find Full Text PDF

Background: Invasive aspergillosis (IA) remains a leading cause of morbidity and mortality in patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). To date, no reliable immunological biomarkers for management and outcome of IA exist. Here, we investigated reconstitution of antifungal immunity in patients during the first 12 months after HSCT and correlated it with IA.

View Article and Find Full Text PDF

Background: The remarkably stable interaction of IgE with its high-affinity receptor FcεRI on basophils and mast cells is critical for the induction of allergic hypersensitivity reactions. Because of the exceptionally slow dissociation rate of IgE-FcεRI complexes, such allergic effector cells permanently display allergen-specific IgE on their surface and immediately respond to allergen challenge by releasing inflammatory mediators. We have recently described a novel macromolecular inhibitor that actively promotes the dissociation of IgE from FcεRI through a molecular mechanism termed facilitated dissociation.

View Article and Find Full Text PDF

The next-generation ophthalmic anti-VEGF therapeutics must aim at being superior to the currently available agents with regard to potency and improved drug delivery, while still being stable and safe to use at elevated concentrations. We show here the generation of a set of highly potent VEGF-A antagonistic DARPins (designed ankyrin repeat proteins) delivering these properties. DARPins with single-digit picomolar affinity to human VEGF-A were generated using ribosome display selections.

View Article and Find Full Text PDF

Adenoviruses (Ads) hold great promise as gene vectors for diagnostic or therapeutic applications. The native tropism of Ads must be modified to achieve disease site-specific gene delivery by Ad vectors and this should be done in a programmable way and with technology that can realistically be scaled up. To this end, we applied the technologies of designed ankyrin repeat proteins (DARPins) and ribosome display to develop a DARPin that binds the knob domain of the Ad fiber protein with low nanomolar affinity (K(D) 1.

View Article and Find Full Text PDF

There is an ever-increasing demand to select specific, high-affinity binding molecules against targets of biomedical interest. The success of such selections depends strongly on the design and functional diversity of the library of binding molecules employed, and on the performance of the selection strategy. We recently developed SRP phage display that employs the cotranslational signal recognition particle (SRP) pathway for the translocation of proteins to the periplasm.

View Article and Find Full Text PDF

The specific intracellular inhibition of protein activity at the protein level is a highly valuable tool for the validation or modulation of cellular processes. We demonstrate here the use of designed ankyrin repeat proteins (DARPins) as tailor-made intracellular proteinase inhibitors. Site-specific proteolytic processing plays a critical role in the regulation of many biological processes, ranging from basic cellular functions to the propagation of viruses.

View Article and Find Full Text PDF

Even proteins that fold well in bacteria are frequently displayed poorly on filamentous phages. Low protein presentation on phage might be caused by premature cytoplasmic folding, leading to inefficient translocation into the periplasm. As translocation is an intermediate step in phage assembly, we tested the display levels of a range of proteins using different translocation pathways by employing different signal sequences.

View Article and Find Full Text PDF

Aminoglycoside phosphotransferase (3')-IIIa (APH) is a bacterial kinase that confers antibiotic resistance to many pathogenic bacteria and shares structural homology with eukaryotic protein kinases. We report here the crystal structure of APH, trapped in an inactive conformation by a tailor-made inhibitory ankyrin repeat (AR) protein, at 2.15 A resolution.

View Article and Find Full Text PDF

The specific intracellular inhibition of protein activity at the protein level allows the determination of protein function in the cellular context. We demonstrate here the use of designed ankyrin repeat proteins as tailor-made intracellular kinase inhibitors. The target was aminoglycoside phosphotransferase (3')-IIIa (APH), which mediates resistance to aminoglycoside antibiotics in pathogenic bacteria and shares structural homology with eukaryotic protein kinases.

View Article and Find Full Text PDF

SHP, the capsid-stabilizing protein of lambdoid phage 21, is highly resistant against denaturant-induced unfolding. We demonstrate that this high functional stability of SHP is due to a high kinetic stability with a half-life for unfolding of 25 days at zero denaturant, while the thermodynamic stability is not unusually high. Unfolding experiments demonstrated that the trimeric state (also observed in crystals and present on the phage capsid) of SHP is kinetically stable in solution, while the monomer intermediate unfolds very rapidly.

View Article and Find Full Text PDF

We report here the evolution of ankyrin repeat (AR) proteins in vitro for specific, high-affinity target binding. Using a consensus design strategy, we generated combinatorial libraries of AR proteins of varying repeat numbers with diversified binding surfaces. Libraries of two and three repeats, flanked by 'capping repeats,' were used in ribosome-display selections against maltose binding protein (MBP) and two eukaryotic kinases.

View Article and Find Full Text PDF

Consensus design is a valuable protein-engineering method that is based on statistical information derived from sequence alignments of homologous proteins. Recently, consensus design was adapted to repeat proteins. We discuss the potential of this novel repeat-based approach for the design of consensus repeat proteins and repeat protein libraries and summarize recent results from such experiments.

View Article and Find Full Text PDF

Background: In proximal tubular cells, PDZK1 (NaPi-Cap1) has been implicated in apical expression of the Na+-dependent phosphate cotransporter (NaPi-IIa) via interaction with its C-terminus. PDZK1 represents a multidomain protein consisting of four PDZ domains and thus is believed to have a broader specificity besides NaPi-IIa.

Methods: We subjected single PDZ domains derived from PDZK1 either to yeast two-hybrid screens or yeast trap assays.

View Article and Find Full Text PDF

We describe an efficient way to generate combinatorial libraries of stable, soluble and well-expressed ankyrin repeat (AR) proteins. Using a combination of sequence and structure consensus analyses, we designed a 33 amino acid residue AR module with seven randomized positions having a theoretical diversity of 7.2x10(7).

View Article and Find Full Text PDF

We present a novel approach to design repeat proteins of the leucine-rich repeat (LRR) family for the generation of libraries of intracellular binding molecules. From an analysis of naturally occurring LRR proteins, we derived the concept to assemble repeat proteins with randomized surface positions from libraries of consensus repeat modules. As a guiding principle, we used the mammalian ribonuclease inhibitor (RI) family, which comprises cytosolic LRR proteins known for their extraordinary affinities to many RNases.

View Article and Find Full Text PDF