Publications by authors named "Forn-Diaz P"

The original PDF and HTML versions of this Article omitted the ORCID ID of the authors L. Magazzù and P. Forn-Díaz.

View Article and Find Full Text PDF

Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators.

View Article and Find Full Text PDF

Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with a single photon at all regimes of coupling strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an LC resonator and an artificial atom, a superconducting qubit.

View Article and Find Full Text PDF

We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel, and we find that low-frequency noise in the coupling parameter causes a reduction of the coherence time during driven evolution.

View Article and Find Full Text PDF

We measure the dispersive energy-level shift of an LC resonator magnetically coupled to a superconducting qubit, which clearly shows that our system operates in the ultrastrong coupling regime. The large mutual kinetic inductance provides a coupling energy of ≈ 0.82 GHz, requiring the addition of counter-rotating-wave terms in the description of the Jaynes-Cummings model.

View Article and Find Full Text PDF

A flux qubit biased at its symmetry point shows a minimum in the energy splitting (the gap), providing protection against flux noise. We have fabricated a qubit of which the gap can be tuned fast and have coupled this qubit strongly to an LC oscillator. We show full spectroscopy of the qubit-oscillator system and generate vacuum Rabi oscillations.

View Article and Find Full Text PDF

We propose different designs of switchable coupling between a superconducting flux qubit and a microwave transmission line. They are based on two or more loops of Josephson junctions which are directly connected to a closed (cavity) or open transmission line. In both cases the circuit induces a coupling that can be modulated in strength, reaching the so-called ultrastrong coupling regime in which the coupling is comparable to the qubit and photon frequencies.

View Article and Find Full Text PDF