Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability.
View Article and Find Full Text PDFPathogens play a key role in insect population dynamics, contributing to short-term fluctuations in abundance as well as long-term demographic trends. Two key factors that influence the effects of entomopathogens on herbivorous insect populations are modes of pathogen transmission and larval host plants. In this study, we examined tritrophic interactions between a sequestering specialist lepidopteran, Euphydryas phaeton, and a viral pathogen, Junonia coenia densovirus, on its native host plant, Chelone glabra, and a novel host plant, Plantago lanceolata, to explore whether host plant mediates viral transmission, survival, and viral loads.
View Article and Find Full Text PDFThe hyperdiverse geometrid genus Hübner, estimated to encompass more than 1,000 species, is among the most species-rich genera in all of Lepidoptera. While the genus has attracted considerable attention from ecologists and evolutionary biologists in recent decades, limited progress has been made on its alpha taxonomy. This contribution focuses on the Olivacea clade, whose monophyly has been recognized previously through molecular analyses.
View Article and Find Full Text PDFUnderstanding how populations respond to climate is fundamentally important to many questions in ecology, evolution, and conservation biology. Climate is complex and multifaceted, with aspects affecting populations in different and sometimes unexpected ways. Thus, when measuring the changing climate it is important to consider the complexity of the phenomenon and the number of ways it can be characterized through different metrics.
View Article and Find Full Text PDFClimate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity.
View Article and Find Full Text PDFScience
November 2023
A history of species co-occurrence in plant communities is hypothesized to lead to greater niche differentiation, more efficient resource partitioning, and more productive, resistant communities as a result of evolution in response to biotic interactions. A similar question can be asked of co-occurring populations: do individual species or community responses differ when communities are founded with plants sharing a history of population co-occurrence (sympatric) or originating from different locations (allopatric)? Using shrub, grass, and forb species from six locations in the western Great Basin, North America, we compared establishment, productivity, reproduction, phenology, and resistance to invaders for experimental communities with either sympatric or allopatric population associations. Each community type was planted with six taxa in outdoor mesocosms, measured over three growing seasons, and invaded with the annual grass Bromus tectorum in the final season.
View Article and Find Full Text PDFThe pressures of global change acting on wild plants and animals include exposure to environmental toxins, the introduction of non-native species, and climate change. Relatively few studies have been reported in which these three main classes of stressors have been examined simultaneously, allowing for the possibility of synergistic effects in an experimental context. In this study, we exposed caterpillars of the Melissa blue butterfly () to three concentrations of chlorantraniliprole, under three experimental climates, on a diet of a native or a non-native host plant throughout larval development in a fully factorial experiment.
View Article and Find Full Text PDFThe potential effects of climate change on plant reproductive phenology include asynchronies with pollinators and reductions in plant fitness, leading to extinction and loss of ecosystem function. In particular, plant phenology is sensitive to extreme weather events, which are occurring with increasing severity and frequency in recent decades and are linked to anthropogenic climate change and shifts in atmospheric circulation. For 15 plant species in a Venezuelan cloud forest, we documented dramatic changes in monthly flower and fruit community composition over a 35-year time series, from 1983 to 2017, and these changes were linked directly to higher temperatures, lower precipitation, and decreased soil water availability.
View Article and Find Full Text PDFOne of the defining features of the Anthropocene is eroding ecosystem services, decreases in biodiversity, and overall reductions in the abundance of once-common organisms, including many insects that play innumerable roles in natural communities and agricultural systems that support human society. It is now clear that the preservation of insects cannot rely solely on the legal protection of natural areas far removed from the densest areas of human habitation. Instead, a critical challenge moving forward is to intelligently manage areas that include intensively farmed landscapes, such as the Central Valley of California.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides.
View Article and Find Full Text PDFInsect herbivores are relatively specialized. Why this is so is not clear. We examine assumptions about associations between local abundance and dietary specialization using an 18-year data set of caterpillar-plant interactions in Ecuador.
View Article and Find Full Text PDFFoundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae).
View Article and Find Full Text PDFEndophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways-including by affecting growth and immune system functioning.
View Article and Find Full Text PDFUncertainty remains regarding the role of anthropogenic climate change in declining insect populations, partly because our understanding of biotic response to climate is often complicated by habitat loss and degradation among other compounding stressors. We addressed this challenge by integrating expert and community scientist datasets that include decades of monitoring across more than 70 locations spanning the western United States. We found a 1.
View Article and Find Full Text PDFInsects have diversified through more than 450 million y of Earth's changeable climate, yet rapidly shifting patterns of temperature and precipitation now pose novel challenges as they combine with decades of other anthropogenic stressors including the conversion and degradation of land. Here, we consider how insects are responding to recent climate change while summarizing the literature on long-term monitoring of insect populations in the context of climatic fluctuations. Results to date suggest that climate change impacts on insects have the potential to be considerable, even when compared with changes in land use.
View Article and Find Full Text PDFSpecialized plant-insect interactions are a defining feature of life on earth, yet we are only beginning to understand the factors that set limits on host ranges in herbivorous insects. To better understand the recent adoption of alfalfa as a host plant by the Melissa blue butterfly, we quantified arthropod assemblages and plant metabolites across a wide geographic region while controlling for climate and dispersal inferred from population genomic variation. The presence of the butterfly is successfully predicted by direct and indirect effects of plant traits and interactions with other species.
View Article and Find Full Text PDFAdaptive coloration among animals is one of the most recognizable outcomes of natural selection. Here, we investigate evolutionary drivers of white coloration in velvet ants (Hymenoptera: Mutillidae), which has previously been considered camouflage with the fruit of creosote bush (). Our analyses indicate instead that velvet ants evolved white coloration millions of years before creosote bush was widespread in North America's hot deserts.
View Article and Find Full Text PDFModern metabolomic approaches that generate more comprehensive phytochemical profiles than were previously available are providing new opportunities for understanding plant-animal interactions. Specifically, we can characterize the phytochemical landscape by asking how a larger number of individual compounds affect herbivores and how compounds covary among plants. Here we use the recent colonization of alfalfa () by the Melissa blue butterfly () to investigate the effects of indivdiual compounds and suites of covarying phytochemicals on caterpillar performance.
View Article and Find Full Text PDFGenomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in contemporary hybrid zones versus ancient hybrid lineages is unknown. Here we show that patterns of introgression in a contemporary hybrid zone in Lycaeides butterflies predict patterns of ancestry in geographically adjacent, older hybrid populations.
View Article and Find Full Text PDF