Metabolic adaptation serves as a significant driving force for cancer growth and poses a substantial obstacle for cancer therapies. Herein, we unraveled the role of m6A-mediated serine synthesis pathway (SSP) regulation in both hepatocellular carcinoma (HCC) development and therapeutic resistance. We demonstrated that treatment of highly specific m6A inhibitor (STM2457) effectively inhibited HCC cell line growth and suppressed spontaneous HCC formation in mice driven by liver-specific Tp53 knockout and Myc overexpression.
View Article and Find Full Text PDFBackground And Aims: Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC.
Approach And Results: CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system.
Cell Mol Gastroenterol Hepatol
September 2023
Cell Mol Gastroenterol Hepatol
June 2022
Cancer cells adapt to hypoxia through HIFs (hypoxia-inducible factors), which initiate the transcription of numerous genes for cancer cell survival in the hypoxia microenvironment. In this study, we find that the FACT (facilitates chromatin transcription) complex works cooperatively with HIFs to facilitate the expeditious expression of HIF targets for hypoxia adaptation. Knockout (KO) of the FACT complex abolishes HIF-mediated transcription by impeding transcription elongation in hypoxic cancer cells.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2018
Small interfering RNAs (siRNAs) are invaluable research tools for studying gene functions in mammalian cells. siRNAs are mainly produced by chemical synthesis or by enzymatic digestion of double-stranded RNA (dsRNA) produced in vitro. Recently, bacterial cells, engineered with ectopic plant viral siRNA binding protein p19, have enabled the production of "recombinant" siRNAs (pro-siRNAs).
View Article and Find Full Text PDF