Pigmentary glaucoma has recently been associated with missense mutations in that are dominantly inherited and enriched in the protein's fascinating repeat domain. PMEL pathobiology is intriguing because PMEL forms amyloid in healthy eyes, and this PMEL amyloid acts to scaffold melanin deposition. This is an informative contradistinction to prominent neurodegenerative diseases where amyloid formation is neurotoxic and mutations cause a toxic gain of function called "amyloidosis".
View Article and Find Full Text PDFDemyelinating disorders of the central nervous system (CNS) occur when myelin and oligodendrocytes are damaged or lost. Remyelination and regeneration of oligodendrocytes can be achieved from endogenous oligodendrocyte precursor cells (OPCs) that reside in the adult CNS tissue. Using a cuprizone mouse model of demyelination, we show that infusion of fractalkine (CX3CL1) into the demyelinated murine brain increases de novo oligodendrocyte formation and enhances remyelination in the corpus callosum and cortical gray matter.
View Article and Find Full Text PDFOligodendrocytes, the myelinating cells of the central nervous system (CNS), perform vital functions in neural protection and communication, as well as cognition. Enhanced production of oligodendrocytes has been identified as a therapeutic approach for neurodegenerative and neurodevelopmental disorders. In the postnatal brain, oligodendrocytes are generated from the neural stem and precursor cells (NPCs) in the subventricular zone (SVZ) and parenchymal oligodendrocyte precursor cells (OPCs).
View Article and Find Full Text PDFNeural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine.
View Article and Find Full Text PDFThe ancient paralogs premelanosome protein () and glycoprotein nonmetastatic melanoma protein B () have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway.
View Article and Find Full Text PDFEpigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 () is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. gene variants, or microdeletions of the 16q24.
View Article and Find Full Text PDFOligodendrocytes produce the myelin that is critical for rapid neuronal transmission in the central nervous system (CNS). Disruption of myelin has devastating effects on CNS function, as in the demyelinating disease multiple sclerosis (MS). Microglia are the endogenous immune cells of the CNS and play a central role in demyelination and repair.
View Article and Find Full Text PDFBreast Cancer (Dove Med Press)
March 2021
Purpose: Forkhead box Q1 () has been shown to contribute to the development and progression of cancers, including ovarian and breast cancer (BC). However, research exploring expression, copy number variation (CNV), and prognostic value across different BC subtypes is limited. Our purpose was to evaluate mRNA expression, CNV, and prognostic value across BC subtypes.
View Article and Find Full Text PDFOligodendrocyte and neural precursor cells (OPCs and NPCs, respectively) in the central nervous system (CNS) have diverse roles in development and homeostasis. During development, precursors build the CNS. In adulthood, they maintain their ability to proliferate and generate differentiated progeny, indicating their tremendous potential to regenerate and repair injured or degenerated CNS.
View Article and Find Full Text PDFPigmentary glaucoma (PG) is a common glaucoma subtype that results from release of pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG has a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG.
View Article and Find Full Text PDFMolecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.
View Article and Find Full Text PDFGenome-wide studies have associated several genetic variants upstream of PITX2 on chromosome 4q25 with atrial fibrillation (AF), suggesting a potential role of PITX2 in AF. Our study aimed at identifying rare coding variants in PITX2 predisposing to AF. The Polymerase chain reaction sequencing of PITX2c was performed in 60 unrelated patients with idiopathic AF.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
May 2018
Purpose: This study examines the effect of FOXC1 on the prostaglandin pathway in order to explore FOXC1's role in the prostaglandin-resistant glaucoma phenotype commonly seen in Axenfeld-Rieger syndrome.
Methods: Binding and transcriptional activity of FOXC1 to the gene coding for the EP3 prostaglandin receptor (PTGER3) were evaluated through ChIP-qPCR and luciferase-based assays. Immortalized trabecular meshwork cells (TM1) and HeLa cells had FOXC1 mRNA reduced via siRNA interference.
Mutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements.
View Article and Find Full Text PDFThe neurodegenerative disease glaucoma is one of the leading causes of blindness in the world. Glaucoma is characterized by progressive visual field loss caused by retinal ganglion cell (RGC) death. Both surgical glaucoma treatments and medications are available, however, they only halt glaucoma progression and are unable to reverse damage.
View Article and Find Full Text PDFMutations in the forkhead box C1 gene (FOXC1) cause Axenfeld-Rieger syndrome (ARS). Here, we investigated the effect of four ARS missense variants on FOXC1 structure and function, and examined the predictive value of four in silico programs for all 31 FOXC1 missense variants identified to date. Molecular modeling of the FOXC1 forkhead domain predicts that c.
View Article and Find Full Text PDFPurpose: Mutations in the bicoid-like transcription factor PITX2 gene often result in Axenfeld-Rieger syndrome (ARS), an autosomal-dominant inherited disorder. We report here the discovery and characterization of novel PITX2 deletions in a small kindred with ARS.
Methods: Two familial patients (father and son) from a consanguineous family were examined in the present study.
Purpose: Mutations in the homeobox transcription factor paired-like homeodomain transcription factor 2 (PITX2) cause Axenfeld-Reiger syndrome (ARS), which is associated with anterior segment dysgenesis (ASD) and glaucoma. To understand ARS pathogenesis, it is essential to know the normal functions of PITX2 and the proteins with which PITX2 interacts in the eye. Therefore, we used a unique cDNA library that we created from human trabecular meshwork (TM) primary cells to discover PITX2-interacting proteins (PIPs).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2011
Purpose: Mutations of the PITX2 gene cause Axenfeld-Rieger syndrome (ARS) and glaucoma. In this study, the authors investigated genes directly regulated by the PITX2 transcription factor to gain insight into the mechanisms underlying these disorders.
Methods: RNA from nonpigmented ciliary epithelium cells transfected with hormone-inducible PITX2 and activated by mifepristone was subjected to microarray analyses.
Purpose: To investigate the role of multigenic variation in primary open-angle glaucoma (POAG) involving the rRNA processing gene WD repeat domain 36 (WDR36).
Methods: We examined the heat shock protein 70/90 (HSP70/90)-organizing co-chaperone stress-induced-phosphoprotein 1 (STI1) as a potential co-modifying gene in glaucoma patients found to harbor WDR36 amino acid variation. The STI1 gene was sequenced and its POAG-associated amino acid variant K434R, as well as the single nucleotide polymorphism (SNP) P173T, were tested for functional defects in a yeast model system previously used to characterize WDR36 variants (using the homologous yeast gene U3 protein 21 [UTP21]).
Ocular mal-development results in heterogeneous and frequently visually disabling phenotypes that include coloboma and microphthalmia. Due to the contribution of bone morphogenetic proteins to such processes, the function of the paralogue Growth Differentiation Factor 3 was investigated. Multiple mis-sense variants were identified in patients with ocular and/or skeletal (Klippel-Feil) anomalies including one individual with heterozygous alterations in GDF3 and GDF6.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
August 2009
Purpose: FOXC1 mutations result in Axenfeld-Rieger syndrome, a disorder characterized by a broad spectrum of malformations of the anterior segment of the eye and an elevated risk for glaucoma. A novel FOXC1 W152G mutation was identified in a patient with aniridia. Molecular analysis was conducted to determine the functional consequences of the FOXC1 W152G mutation.
View Article and Find Full Text PDFPurpose: To assess the effects of previously uncharacterized PITX2 missense mutations found in patients with Axenfeld-Rieger syndrome and to determine the functional roles of the C-terminal region of PITX2.
Methods: Recombinant PITX2 proteins were analyzed with the use of cellular immunofluorescence, electrophoretic mobility shift, reporter transactivation, and protein half-life assays in human trabecular meshwork cells.
Results: Two homeobox mutations, R43W and R90C, resulted in severely reduced DNA-binding and transcriptional activation despite normal nuclear localization.
Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. POAG is associated with a characteristic progression of changes to ocular morphology and degeneration at the optic nerve head with the loss of visual fields. Physical mapping efforts identified genomic loci in which to search for causative POAG gene mutations.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2008
Purpose: Mutations in the human forkhead box C1 gene (FOXC1) cause Axenfeld-Rieger (AR) malformations, often leading to glaucoma. Understanding the function of FOXC1 necessitates characterizing the proteins that interact with FOXC1. This study was undertaken to isolate FOXC1-interacting proteins and determine their effects on FOXC1.
View Article and Find Full Text PDF