Objective: Optimized deep brain stimulation (DBS) is fast becoming a therapy of choice for the treatment of Parkinson's disease (PD). However, the post-operative optimization (aimed at maximizing patient clinical benefits and minimizing adverse effects) of all possible DBS parameter settings using the standard-of-care clinical protocol requires numerous clinical visits, which substantially increases the time to optimization per patient (TPP), patient cost burden and limit the number of patients who can undergo DBS treatment. The TPP is further elongated in electrodes with stimulation directionality or in diseases with latency in clinical feedback.
View Article and Find Full Text PDFWe report use of a dual-density dielectric barrier surrounding a detachable high-pass radiofrequency (RF) birdcage coil to achieve an order-of-magnitude reduction of acoustic noise in a high-performance head gradient system. The barrier consisted of a 4.5 mm-thick mass-loaded vinyl and a 6 mm-thick polyurethane foam.
View Article and Find Full Text PDFDSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD.
View Article and Find Full Text PDFHMGA2::NCOR2 keratin-positive giant cell tumors in children with response to imatinib in an infant.
View Article and Find Full Text PDFPurpose: To study implant lead tip heating because of the RF power deposition by developing mathematical models and comparing them with measurements acquired at 1.5 T and 3 T, especially to predict resonant length.
Theory And Methods: A simple exponential model and an adapted transmission line model for the electric field transfer function were developed.
Purpose: MRI using 3D stack-of-spirals (SoS) readout on a high-performance gradient system is subject to strong second-order, spatially varying concomitant fields, which can lead to signal dropout and blurring artifacts that become more significant at locations farther from the gradient isocenter. A method for compensating for second-order concomitant fields in 3D axial SoS image reconstruction is described.
Methods: We retrospectively correct for second-order concomitant field-induced phase error in the 3D SoS data by slice-dependent k-space phase compensation based on the nominal spiral readout trajectories.
A 76-year-old Malay female presented with 2 days history of fever and vomiting. She was found to have Escherichia coli and Klebsiella pneumoniae bacteraemia with no clear intra-abdominal cause on the initial computed tomography of the abdomen and pelvis (CTAP). She clinically improved with 2 weeks duration of intravenous meropenem.
View Article and Find Full Text PDFIntroduction: The outcome of patients with metastatic colorectal cancer (mCRC) has improved significantly in the last few decades. Metastatic colorectal cancer is a highly heterogenous cancer. Beyond second line chemotherapy, treatment decisions are often based on molecular testing.
View Article and Find Full Text PDFSerous cystadenoma is a rare lesion in the para-testicular tissue, with even rarer reports of this entity occurring in the scrotum post-orchidopexy. We present such an occurrence, adding support for its existence as a distinct entity.
View Article and Find Full Text PDFBackground: Online adaptive radiotherapy (ART) involves the development of adaptable treatment plans that consider patient anatomical data obtained right prior to treatment administration, facilitated by cone-beam computed tomography guided adaptive radiotherapy (CTgART) and magnetic resonance image-guided adaptive radiotherapy (MRgART). To ensure accuracy of these adaptive plans, it is crucial to conduct calculation-based checks and independent verification of volumetric dose distribution, as measurement-based checks are not practical within online workflows. However, the absence of comprehensive, efficient, and highly integrated commercial software for secondary dose verification can impede the time-sensitive nature of online ART procedures.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
December 2023
The dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms designed to be selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m).
View Article and Find Full Text PDFPurpose: To demonstrate the technical feasibility and the value of ultrahigh-performance gradient in imaging the prostate in a 3T MRI system.
Methods: In this local institutional review board-approved study, prostate MRI was performed on 4 healthy men. Each subject was scanned in a prototype 3T MRI system with a 42-cm inner-diameter gradient coil that achieves a maximum gradient amplitude of 200 mT/m and slew rate of 500 T/m/s.
Carriers of BRCA1 germline pathogenic variants are at substantially higher risk of developing breast and ovarian cancer than the general population. Accurate identification of at-risk individuals is crucial for risk stratification and the implementation of targeted preventive and therapeutic interventions. Despite significant progress in variant classification efforts, a sizable portion of reported BRCA1 variants remain as variants of uncertain clinical significance (VUSs).
View Article and Find Full Text PDFMeasuring the time/frequency dependence of diffusion MRI is a promising approach to distinguish between the effects of different tissue microenvironments, such as membrane restriction, tissue heterogeneity, and compartmental water exchange. In this study, we measure the frequency dependence of diffusivity (D) and kurtosis (K) with oscillating gradient diffusion encoding waveforms and a diffusion kurtosis imaging (DKI) model in human brains using a high-performance, head-only MAGNUS gradient system, with a combination of b-values, oscillating frequencies (f), and echo time that has not been achieved in human studies before. Frequency dependence of diffusivity and kurtosis are observed in both global and local white matter (WM) and gray matter (GM) regions and characterized with a power-law model ∼Λ*f.
View Article and Find Full Text PDFAccess to high-quality MR exams is severely limited for patients with some implanted devices due to labeled MR safety conditions, but small-bore systems can overcome this limitation. For example, a compact 3 T MR scanner (C3T) with high-performance gradients can acquire exams of the head, extremities, and infants. Because of its reduced bore size and the patient being advanced only partially into the bore, the associated electromagnetic (EM) fields drop off rapidly caudal to the head, compared to whole-body systems.
View Article and Find Full Text PDFPurpose: We hypothesized that the time-dependent diffusivity at short diffusion times, as measured by oscillating gradient spin echo (OGSE) diffusion MRI, can characterize tissue microstructures in glioma patients.
Theory And Methods: Five adult patients with known diffuse glioma, including two pre-surgical and three with new enhancing lesions after treatment for high-grade glioma, were scanned in an ultra-high-performance gradient 3.0T MRI system.
In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies.
View Article and Find Full Text PDFThe dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms that are selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m).
View Article and Find Full Text PDFPurpose: Ultrasound is often the preferred modality for image-guided therapy or treatment in organs such as liver due to real-time imaging capabilities. However, the reduced conspicuity of tumors in ultrasound images adversely impacts the precision and accuracy of treatment delivery. This problem is compounded by deformable motion due to breathing and other physiological activity.
View Article and Find Full Text PDFIntroduction: This cadaveric study describes the collateral ligament constraints on the feline tarsocrural joint using stress radiography.
Methods: Thirty-six feline cadaveric hindlimbs free of orthopaedic disease were placed in a custom-made jig and controlled stress radiography was performed before and after transection of one, or both collateral ligaments. Changes in varus and valgus deviation and pronation and supination were measured at three limb angles (extension, 120 flexion and 90 flexion).
Purpose: Asymmetric gradient coils introduce zeroth- and first-order concomitant field terms, in addition to higher-order terms common to both asymmetric and symmetric gradients. Salient to compensation strategies is the accurate calibration of the concomitant field spatial offset parameters for asymmetric coils. A method that allows for one-time calibration of the offset parameters is described.
View Article and Find Full Text PDFJ Gastrointest Cancer
September 2023
Introduction: Mismatch repair immunohistochemistry (MMR IHC) or microsatellite instability (MSI) testing is now routinely performed in patients with colorectal cancer (CRC) to select those requiring Lynch syndrome testing. MMR IHC is also carried out on CRC and upper gastrointestinal (GI) cancers to select patients for immunotherapy. We review the Royal Marsden Hospital's pathway of molecular to germline testing for Lynch syndrome in the context of NICE guidance and the National Test Directory.
View Article and Find Full Text PDF