Focal adhesions (FAs) are force-bearing multiprotein complexes, whose nanoscale organization and signaling are essential for cell growth and differentiation. However, the specific organization of FA components to exert spatiotemporal activation of FA proteins for force sensing and transduction remains unclear. In this study, we unveil the intricacies of FA protein nanoarchitecture and that its dynamics are coordinated by a molecular scaffold protein, BNIP-2, to initiate downstream signal transduction for cardiomyoblast differentiation.
View Article and Find Full Text PDFThere is a new awareness of the widespread nature of metabolic dysfunction-associated steatotic liver disease (MASLD) and its connection to cardiovascular disease (CVD). This has catalyzed collaboration between cardiologists, hepatologists, endocrinologists, and the wider multidisciplinary team to address the need for earlier identification of those with MASLD who are at increased risk for CVD. The overlap in the pathophysiologic processes and parallel prevalence of CVD, metabolic syndrome, and MASLD highlight the multisystem consequences of poor cardiovascular-liver-metabolic health.
View Article and Find Full Text PDFTo date, over 40 epigenetic and 300 epitranscriptomic modifications have been identified. However, current short-read sequencing-based experimental methods can detect <10% of these modifications. Integrating long-read sequencing technologies with advanced computational approaches, including statistical analysis and machine learning, offers a promising new frontier to address this challenge.
View Article and Find Full Text PDFHeart failure is a clinical syndrome with rising global incidence and poor prognosis despite improvements in medical therapy. There is increasing research interest in epigenetic therapies for heart failure. Pathological cardiac remodelling may be driven by stress-activated cardiac signalling cascades, and emerging research has shown the involvement of epigenetic signals that regulate transcriptional changes leading to heart failure.
View Article and Find Full Text PDFBackground & Aims: Plant sterols (PS) have been shown to lower blood lipid-lipoproteins concentrations and may serve as a potential functional ingredient for cardiovascular disease (CVD) risk management. However, there are limited studies examining this effect in individuals with metabolic syndrome (MetS). The aim of this study was to evaluate the effects of PS-enriched food consumption as part of a healthy dietary pattern (HDP) on blood pressure and endothelial function in Singaporean adults with MetS.
View Article and Find Full Text PDFRationale: Cardiac-expressed long noncoding RNAs (lncRNAs) are important for cardiomyocyte (CM) differentiation and function. Several lncRNAs have been identified and characterized for early CM lineage commitment, however those in later CM lineage specification and maturation remain less well studied. Moreover, unique atrial / ventricular lncRNA expression has never been studied in detail.
View Article and Find Full Text PDFBackground: Heart failure (HF) is a leading cause of morbidity and mortality worldwide, with over 18 million deaths annually. Despite extensive research, genetic and environmental factors contributing to HF remain complex and poorly understood. Recent studies suggest that epigenetic modifications, such as DNA methylation, may play a crucial role in regulating HF-associated phenotypes.
View Article and Find Full Text PDFIntroduction: This study addresses the rising cardiovascular disease (CVD) rates in the United Arab Emirates (UAE) by investigating the occurrence and impact of genetic variants in CVD-related genes.
Methods: We collected all genes linked to heritable CVD from public and diagnostic databases and mapped them to their corresponding biological processes and molecular pathways. We then evaluated the types and burden of genetic variants within these genes in 343 individuals from the Emirati Mendelian Study Cohort and 3,007 national electronic health records.
Eur J Prev Cardiol
September 2024
Among their many unique biological features, bats are increasingly recognized as a key reservoir of many emerging viruses that cause massive morbidity and mortality in humans. Bats are capable of harboring many of these deadly viruses without any apparent signs of pathology, in a mechanism known as viral disease tolerance. However, the immunological mechanisms behind viral tolerance remain poorly understood.
View Article and Find Full Text PDFDNA methylation plays an important role in various biological processes, including cell differentiation, ageing, and cancer development. The most important methylation in mammals is 5-methylcytosine mostly occurring in the context of CpG dinucleotides. Sequencing methods such as whole-genome bisulfite sequencing successfully detect 5-methylcytosine DNA modifications.
View Article and Find Full Text PDFLancet Reg Health West Pac
July 2024
Improved upstream primary prevention of cardiovascular disease (CVD) would enable more individuals to lead lives free of CVD. However, there remain limitations in the current provision of CVD primary prevention, where artificial intelligence (AI) may help to fill the gaps. Using the data informatics capabilities at the National University Health System (NUHS), Singapore, empowered by the Endeavour AI system, and combined large language model (LLM) tools, our team has created a real-time dashboard able to capture and showcase information on cardiovascular risk factors at both individual and geographical level- CardioSight.
View Article and Find Full Text PDFAim: Patients with metabolic dysfunction-associated steatotic liver disease (MASLD) are at increased risk of incident cardiovascular disease. However, the clinical characteristics and prognostic importance of MASLD in patients presenting with acute myocardial infarction (AMI) have yet to be examined.
Methods: This study compared the characteristics and outcomes of patients with and without MASLD presenting with AMI at a tertiary centre in Singapore.
Background: It is known that gestational diabetes mellitus (GDM)-complicated pregnancies could affect maternal cardiometabolic health after delivery, resulting in hepatic dysfunction and a heightened risk of developing non-alcoholic fatty liver disease (NAFLD). Hence, this study aims to summarise existing literature on the impact of GDM on NAFLD in mothers and investigate the intergenerational impact on NAFLD in offspring.
Methods: Using 4 databases (PubMed, Embase, Web of Science and Scopus) between January 1980 and December 2023, randomized controlled trials and observational studies that assessed the effect of maternal GDM on intergenerational liver outcomes were extracted and analysed using random-effects meta-analysis to investigate the effect of GDM on NAFLD in mothers and offspring.